
Structural Stability, Catastrophe Theory, and Applied Mathematics: The John von
Neumann Lecture, 1976

Rene Thom

SIAM Review, Vol. 19, No. 2. (Apr., 1977), pp. 189-201.

Stable URL:

http://links.jstor.org/sici?sici=0036-1445%28197704%2919%3A2%3C189%3ASSCTAA%3E2.0.CO%3B2-O

SIAM Review is currently published by Society for Industrial and Applied Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/siam.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Tue Mar 4 10:55:46 2008

http://links.jstor.org/sici?sici=0036-1445%28197704%2919%3A2%3C189%3ASSCTAA%3E2.0.CO%3B2-O
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/siam.html


SIAM REVIEW 
Vol. 19, No. 2, April 1977 

STRUCTURAL STABILITY, CATASTROPHE THEORY, 
AND APPLIED MATHEMATICS* 

The John von Neumann Lecture, 1976 

Abstract. We give a brief description of catastrophe theory, and of its applications; to my view, it 
is a fundamentally qualitative, interpretative theory, and, by itself, it has no ability to predict. 
Examples are given of interpretations of singularities in statistics and in geophysics (plate tectonics). 

It is perhaps ironical that I am now assessing the importance of such ideas and 
theories as structural stability and catastrophe theory in front of an audience of 
applied mathematicians. Why? Because in its very intention catastrophe theory 
emphasizes the qualitative aspect of empirical situations, whereas applied 
mathematics is fundamentally devoted to computation. 

Of course, applied mathematics cannot exclude qualitative thinking, as its 
problems are originally given in ordinary language-in a qualitative way. But 
most applied mathematicians would say-(I believe)-that "modelization" is 
nothing but translating this qualitative problem into a quantitative model, which 
then has to be confronted with experiment. On the contrary, catastrophe theory 
would say that quantitative studies-inasmuch as they are possible and reliable- 
may help in defining local morphological elements (singularities), from which a 
global qualitative construction may be built. 

Moreover, the truth is that I do not have myself a very clear picture of the 
activity of a professional applied mathematician. Hence it is quite possible that 
some of the ideas I express here may seem to you a bit out of the field, as I never 
had the opportunity of working myself on a very quantitative basis-ven in pure 
mathematics. But as many people-specially in popularization articles-have 
expressed tremendous hopes about the pragmatic possibilities of catastrophe 
theory, I think it is time to come back to a more sober appreciation of its impact. 

Perhaps a very important cause of the ambiguity, when dealing with catas- 
trophe theory, is its radically novel epistomological status. You read frequently, in 
these popular articles about catastrophe theory (here abbreviated C.T.), that 
"Catastrophe theory is a mathematical theory". The truth is that C.T. is not a 
mathematical theory, but a "body of ideas", I daresay a "state of mind". As soon 
as the ideas developed by C.T. have reached a very rigorous mathematical status, 
then these ideas have been incorporated in specific branches of mathematics: 
singularities of smooth mappings, stratified spaces, singularities of differential 
forms, bifurcation theory, qualitative dynamics, etc. Hence, strictly speaking, C.T. 
is not a mathematical theory. Of course, C.T. arose from mathematics, and it has 
led to important progress in mathematics itself; and we may hope that this 
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contribution is not finished. On the contrary, the "practical7' results of C.T. are, up 
to now, not very striking; evaluated by the strict-positivist-criterion of the 
discovery of "new phenomena", they reduce to a few (not too surprising) facts in 
geometric optics elaborated by M. Berry at Bristol in his work on caustics. 

In the minds of most people, C.T. reduces to what I call "elementary 
catastrophe theory7' (E.C.T.) involving the (too) celebrated seven catastrophes on 
R4. For the sake of completeness, let me perhaps recall the basic schema of an 
"elementary catastrophe7'. Suppose we have a system ( S ) ,the states of which are 
parametrized by a point ( in a (smooth) manifold M. Suppose that we may act on 
this system by varying a point u in a space U of control parameters. Suppose this 
determination is defined by a map (system of equations) 

In practically all cases considered in control theory, one admits that this system of 
equations may be solved-through the implicit function theorem, with the 
assumption that the acobian D(Fl ,  . . . ,Fn)/D((,, . . . ,6,) is not zero; hence the 
possibility of solving h( ) with respect to (,, . . . ,(,, 5 = cp(u), through any point of 
the graph of the map F i n  the product space Mx U S  Rn. This amounts to saying 
(cf. n Z m )  that this graph is transversal to the fibers of the projecting map 
a:M X U + U (Condition 7).Control theory then tries to define functions u, (t) in 
such a way as to have the corresponding functions (((t) = cp o u(t)) satisfy some 
optimality condition. 

Let us suppose first that n = 1; then (C) reduces to only one equation 
F(x, u,) =0. If aF/ax # 0 we are in the standard situation (7). 

Elementary catastrophe theory deals, on the contrary, with situations where 
the transversality condition (7) fails; that such situations cannot be avoided-in 
general-is shown by the following picture (Fig. 1) where for n =m = 1the graph 
of (C) is a compact curve. Any small deformation of Fwill have points with vertical 
tangents (a, b, projecting to a ,  P). Of course, from a "control" point of view, we 
will do all that we can in order to avoid (in our space U) the "bad" points a ,  P, 
where the variation of our system is no longer smoothly controllable. Catastrophe 
theory-in contrast-tries to study such situations. Here enters the idea that there 
are two types of lack of transversality: the "finite codimension type", and the 
"infinite codimension" type. The finite type is exemplified by the case where 
aF/ax =0, but there exists a higher order derivative a k ~ / a x k  which is not zero 
(with a'F/axl(0) =0, for i <k). Then using the Weierstrass-Malgrange prepara- 
tion theorem, F may be locally replaced by a distinguished polynomial in x :  

and this local situation is now well understood, as we have for it a polynomial 
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model. Moreover, if the set of coordinates u is such that the mapping u + v 
u -,ai(u) into the space v of coefficients of the generic equation of degree k 
xk/k + v ~ x ~ - ~ +. . - + v, is surjective (the (k - 1) coefficient vl being annihilated 
through translation on x), then the singularity will be "unavoidable", i.e., 
structurally stable under any small ckdeformation of the equation F(6, u) = 0. 
This is a consequence of the global continuity of the distinguished polynomial as 
defined by the local germ of functions F, a fact expressed in the Weierstrass- 
Malgrange theorem. 

The infinite codimension case is exemplified by F(x, u )  = u -exp (-l/x2), a 
curve with a flat contact (infinite order). No embedding of F into a finite 
parameter family F(x, v) can make it stable. Such singularities are avoidable 
(structurally unstable) by a small deformation of F. It is the result of the theory of 
maps (J. Mather) that for a given set of integers (n, m), there exists only a finite 
number of "unavoidable7' singularities, although the definition of local equival- 
ence has to be purely topological and no longer a local C" isomorphism (at least, 
in general). 

Hence this general idea that there are "unavoidable" catastrophe situations, 
and that it is of fundamental importance to know all of them; whereas control 
theory up to now tries to avoid them (not always, as in fact control theory knows 
the need of shifting strategies discontinuously). It seems clear that if we want to 
understand biological phenomena, we have to understand these catastrophic 
effects: for life itself shows a great mastery in dealing with these phenomena, as 
shown by physiological events such as heart beat, nerve influx, and by mor- 
phological events, such as gastrulation, in embryology. 
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Now in E.C.T. we suppose that the local state 6 in F(6, u) is itself given by an 
optimality principle of type G(6, u): that is, (C) reduces to: 6 minimizes G( t ,  u )  
for a given u E U,hence to system (C) of type 

which defines the critical points of G(6, u) when 6 varies. Caution should be 
applied to distinguish between situations which are described by an optimality 
principle and those governed by an "extremality" principle. Although formally 
they are directed by the same mathematics, they exhibit a fairly different charac- 
ter. One could say that situations governed by an optimality principle exhibit a 
fundamentally irreversible character, whereas those governed by an extremality 
principle depend on a reversible dynamics. Typical of this last situation is the 
Hamilton-Jacobi theory which describes the propagation of a wave front, and 
which leads to an extremality principle on the space (p)of normalized covectors. 
(The G function itself is defined in terms of the initial data.) The global theory of 
singularities of functions, which arises out of E.C.T., is now fully grown. It has 
shed light on many points of wave optics (Saddle-method: the idea of unfolding is 
very useful here), and the theory has now reached a stage (due to the work of V. 
Arnold and the Moskow school) where its capabilities exceed the need for it. (The 
singularities of codim <16 are now known, and it has developed into a very 
beautiful theory, which touches many branches of mathematics: algebraic 
geometry, Platonic solid classification, simple Lie group theory, etc.). 

For most people, C.T. is identified with E.C.T. The reason for this is obvious: 
the table of the seven elementary catastrophes appears as an immediate way of 
classifying natural situations, and beyond that classification, little is known. 
Nevertheless, the objection that very few natural dynamics are gradient dynamics 
remains valid. To that objection it may of course be answered that near any 
attractor A of any dynamical system there is a local Lyapunov function. Hence in 
some sense any asymptotic rCgime is defined by a Lyapunov function around its 
attractor. In fact, if one allows some ck-noise, then only the Lyapunov function 
may be said to have a meaning, as the flow remains entering into the level variety 
of such a Lyapunov function. But then the question arises whether such Lyapunov 
functions do exhibit the bifurcation phenomena exhibited by the E.C.T. The 
answer is obviously no, as the simplest of all possible bifurcations, the so-called 
Hopf bifurcation, which transforms a source into a repeller, creates-in general-
an attracting cycle around the repeller. Then the corresponding Lyapunov 
function exhibits (on a straight line section) a behavior of type x4/4+x2/2 to 
x4/4-x2/2, bifurcation among all even functions. Hence, in such a case, the 
cyclic, nongradient-like character of the bifurcation is expressed by the fact that 
the corresponding Lyapunov function undergoes a catastrophe which is not 
elementary, but is defined only among functions which are equivariant with 
respect to some action of a symmetry group. This simple example shows that there 
is no chance that E.C.T. alone may provide a sufficient set of possible bifurcations 
in nature (an objection already made by J. Guckenheimer, who showed that 
bifurcations among gradient-like fields is not the same as the bifurcation of 
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gradient fields). It is quite obvious that other types of bifurcations, such as 
symmetry equivariant, composed map bifurcations, etc., have to be taken into 
consideration. Moreover we still know very little about the global problem of 
catastrophe theory, which is the problem of dynamic synthesis, i.e., how to relate 
into a single system a field of local dynamics. 

Perhaps the most complete studies which deal with this problem are those 
concerned with the modelizing of embryological processes. Here perhaps the 
most novel idea is that when we model such processes, there is no point in 
looking-as for ordinary dynamical systems-for a flow varying in a fixed phase 
space, but, instead, one should look for a fixed dynamics defined on a succession of 
phase spaces: a degree of liberty being at some times triggered, and at some other 
times, damped out and nonexistent. But of course these ideas have not yet reached 
the stage of a possible experimental confirmation, and hence are still in an infancy 
stage. 

From my viewpoint, C.T. is fundamentally qualitative, and has as its funda- 
mental aim the explanation of an empirical morphology. Its epistomological status 
is the one of an interpretative-hermeneutic theory. Hence it is not obvious that it 
will necessarily develop into new pragmatic developments. 

The importance of C.T. in applied mathematics. The idea of structural 
stability, although proposed originally by technicians in applied mathematics, 
Andronov and Pontryagin, does not seem to have elicited a tremendous 
enthusiasm among specialists in computing techniques. I believe that there is a 
fundamental opposition between the structural stability approach and the "com- 
puting viewpoint7'. When a situation is structurally stable (and very strongly so), 
this means that this situation may be reached regardless of the initial data, or with 
a very poor approximation on these data. Hence computing is in that case not 
necessary, and the situation might be easier to describe through geometrical 
description, or in general with ordinary language. 

In contrast, when we deal with an unstable, threshold-like situation where we 
have the choice between several outcomes (success or failure), then it is of 
fundamental importance to determine the precise position of the threshold which 
separates the initial data which lead to success from those which lead to failure. 
Hence, in such circumstances, a highly accurate description of the underlying 
dynamics is necessary. Such a precise description in general involves using 
physical laws, which are the only possible tools to get such precise dynamics. This 
shows why the structural stability requirement actually means very little for the 
technician who has to give a reliable answer to a technical problem. 

There is also the philosophical problem pointed out by D. Berlinski in 
"Synthese": Why is it that physical laws do not themselves obey the structural 
stability requirement? Classical mechanics, for instance, has to do with Hamilto- 
nian systems, which are very far from being structurally stable. This is a huge 
problem, which I would like to discuss relatively briefly, as a complete treatment 
would require lengthy developments. 

I would claim-as a principle-that any phenomenon is associated with some 
kind of irreversibility: for a phenomenon has to appear, hence it has to emit 
something which can be seen (or detected through some apparatus amplifying 



human vision). Then the apparent time reversibility of physical laws only shows 
that these laws do not describe phenomena by themselves, but more accurately 
change of frames between observers. They describe, so to speak, how the same 
local irreversible phenomenon may be perceived by different observers. For 
instance Newtonian dynamics, which gives rise to Kepler7s laws and planetary 
motions, does not in itself describe a phenomenology. For the motion of celestial 
bodies is a phenomenon only inasmuch as these bodies are lighted by the sun-a 
typically irreversible phenomenon due to the irreversible transfer from gravita- 
tional energy to radiative energy. Moreover, even a planet which turns around an 
obscure sun does not lead to a phenomenon: for, in Keplerian terms, there is 
always a canonical transformation of phase space which maps a planet at time t to 
the same planet at time t l>t .  This canonical transformation, it is true, is not 
compatible with the projection (qi, pi) + (qi) on the usual configuration space. But 
such incompatibility may lead only to phenomenology if one is able to fix the (qi) 
coordinate, that is, to localize the planet. Such a localization operation (an 
idempotent projection) always requires coupling with a source of energy (the 
emission of which is irreversible). 

Putting things more abruptly, I would dare to say that the time reversibility of 
physical laws is probably no more than the expression of a sociological constraint, 
namely communication between several observers. For this constraint is nothing 
more than the linguistic constraint between members of the same linguistic 
community: when people speak the same language, they share the same semantic 
universe: because, to the same sentence, they have to put the same meaning (or at 
least, approximately the same). In fact, any observer has to communicate with 
himself-with his own past. Hence he needs to have the possibility of comparing 
his way of looking at the universe at time t, with the look he had at time to< tl. 
This requires a common standard of description, a permanent way of parametriz- 
ing the states of the world. Hence reversibility of the dynamics. 

The same fact can be expressed in another way: Suppose we have a dynamical 
system ( S )described by a flow X on a smooth manifold M. What does it mean to 
speak of a stationary--or an asymptotic-rCgime of this dynamic? This basic 
problem has no satisfactory answer. But let us define this rCgime by the attractor A 
of the dynamic towards which the given trajectory is tending with t tending to 
infinity. Then the asymptotic dynamics on the attractor A has to be time- 
reversible, for the operation of taking the limit for t += +aadmits only stationary 
dynamics as solutions. Hence if we want to describe stable "objects or situations" 
in our irreversible universe, only those which carry a time-reversible dynamics are 
possible candidates. It is also possible that this dynamics is not smooth, that it owes 
its reversibility to compensation between two antagonistic irreversible dynamics. 
This suggests that the motivation for Hamiltonian dynamics may perhaps be 
found in quantum mechanics; namely observe that the harmonic oscillator flow, 
associated with the Hamiltonian H= p 2 + q2 is also the gradient of the function 
V =pq with respect to the hyperbolic metric ds2 = dq2-dp2. This can be viewed 

. 	 as the result of a conflict between two antagonistic dynamics supported on the p, q 
axes respectively (or as in a zero-sum game between two players). If such a view is 
correct, only very few of the possible Hamiltonian systems could be "quantized", 
namely those for which H i s  the square of the modulus of a holomorphic function 
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of the complex variables z, =qj +ipi. Only those could be considered as "natural". 
In some sense, the lack of structural stability exhibited by the physical laws is 
nothing but the expression of constraints, namely those associated with the global 
conservation of space-time, despite the ceaseless changes in space due to local 
interactions. 

The quantitative aspects of catastrophe theory. Because of the relation of 
E.C.T. to Hamilton-Jacobi theory, it is obvious that some physical phenomena 
are amenable to the catastrophic schema. I quoted earlier the caustics of 
geometric optics. Some partial differential equations lead directly to the same 
E.C.T. scheme; Riemann's equation u, =f(u), has solutions given by the E.C.T. 
schema as shown by Peter Lax much before catastrophe theory existed. But 
generalizations of such results require caution. As soon as the underlying sub- 
strate has local symmetry properties, then the theory has to be changed accord- 
ingly in order to take account of the constraints due to this symmetry. The 
phenomena of phase (and phase transitions) are not amenable directly to catas- 
trophe theory. One could say that E.C.T. describes the behavior of a sort of ether, 
a materia prima without any specific property. For that reason, on any medium 
E.C.T. still keeps some validity (at a sort of global, qualitative viewpoint). But the 
precise quantitative laws will in general not exist. Typical examples of that are the 
critical phenomena, where E.C.T. is nothing but the classical Landau (or mean 
field) theory, theory which leads to incorrect characteristic exponents. Here again, 
this failure of E.C.T. is due to the fact that the thermodynamic functions have to 
satisfy-precisely because of their statistical definition-subtle requirements 
when they are considered as functions defined on spatial coordinates. They are 
always very near harmonic functions, as they have to damp their variations 
through diffusion. 

In fact, the physical applications of C.T. are not very important, because 
precisely on a physical substrate, the evolution of which is very accurately 
described by physical laws, the presence of catastrophes may be immediately 
deduced from the equations. Hence C.T. itself is dispensable. 

It is important to know now to what extent the local polynomial models of 
E.C.T. may be fit into empirical data. It is very tempting to do so on a precise 
quantitative basis. Of course such a fit may be done; it has already been done in 
biochemistry (protein denaturation, Kozak), and also for some sociological 
phenomena (modeling of prison riots) by E.  C. Zeeman and his coworkers. I must 
confess that such attempts of applying quantitatively E.C.T. (particularly on a 
very "soft7' substrate such as sociology) do not seem to me very reliable. I have 
some "a priori" objections towards giving an explicit quantitative expression for 
the unfolding parameters of a catastrophe. My objection stems from the fact that 
the homogeneity requirement is in general not satisfied for the modeled 
phenomenon; hence it will be preposterous to expect for the u functions explicit 
homogenous expressions, needed if the phenomenon is invariant with respect to 
space dilatations. And if we do not have such a homogeneity property, then the u 
functions have ad hoc expressions which will depend in an arbitrary way on the 
units used to measure the magnitudes entering in the formula. 

Now it will probably be excessive to deny the possibility of applying a 
quantitative fit of a catastrophe scheme to empirical data. But such a procedure 



may not be more (nor less) trusted than any other approximation procedure 
applied in numerical analysis (such as the interpolation of a continuous function 
by a polynomial by the least square method) and its validity should be confirmed in 
each specific case; and obviously, we cannot expect such approximating devices to 
throw any light on the mechanisms underlying the studied phenomena. The ad 
hoc-and probably illusory--character of such technics is particularly obvious 
when the underlying coordinates describe psychological feelings such as aggres- 
siveness or frustration, for which no obvious way of measurement can be found. 

Nevertheless, we cannot dismiss the possibility that a fine quantitative 
study--on a relatively "hard" substrate, close to physics-may help to decide 
between several catastrophe models. Very frequently, there is no uniqueness of 
the generating catastrophe, although up to now no example is known of such a 
study. A precise quantitative study of such a case may help to make a choice 
between models, and decide for a further qualitative modeling. This may be true 
also for interpreting statistical data, as explained below. 

It is my conviction that the domain amenable to quantitative analysis has 
been-in recent years-grossly exaggerated (the interests of the computer indus- 
try are perhaps not entirely foreign to this state of affairs). Even for a problem of 
physical nature, the physical laws give you constraints which have to be satisfied, 
but do not suffice in general to determine the evolution of the system. For if we 
submit any physical medium in a domain D to boundary conditions, then it will be 
false in general that its further evolution will everywhere satisfy a global partial 
differential equation (E).What happens-in general-is that there will be an open 
dense subdomain (Do) where the equation (E) is satisfied, the remaining com- 
plementary set ( D  -Do) will be a set of "catastrophe" points, otherwise stated, 
"defects" of the structure; this set will contain "regular" points forming an open 
set D l ,  where some system of P.D.E.'s (El) associated with (E) will have to be -
satisfied; and then on D-' -D', defects of the defects, some other system (E,) will 
have to be satisfied, etc. Up to now, no algorithm exists to determine this sequence 
(this stratification) of defects, nor the associated sequence of P.D.E.'s. This is why 
we can sensibly believe that a complete qualitative classification of "defects" will 
have to be found before a satisfactory quantitative approach may be realized. (Of 
course, it is always possible in concrete cases to rely on a statistical analysis, but 
then we can never be absolutely sure that a global failure (catastrophe!) of our 
given system will not happen.) 

The qualitative analysis. Catastrophe theory is not a mathematical theory; it 
is also not a "scientific theory", as we have seen that by itself it cannot provide any 
clue to external reality. Nevertheless, it claims to have something to say about 
phenomena. The statements that C.T. allows one to produce are of the following 
nature: "If, in the interval of time (to, t,), the system exhibited some morphology 
(M:), then one has to expect that in a further interval (t,, t,) it will exhibit some 
morphology (M:)." 

Such a statement can never be considered as an absolutely certain prediction, 
such as the ones derived from physical laws. The future morphology (M:) derives 
from (MA) by an hypothesis about the simplicity of the underlying dynamics. If the 
prediction is realized, then there is nothing to be surprised about. If the prediction 
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fails (that may happen) and a morphology MI2 different from M: does appear, this 
is interesting, because it shows that our original assumptions were too simple, and 
some new element of complication has to be introduced into the picture. Paradox- 
ically, one could say that C.T. is more interesting when it fails than when it is 
successful. This type of "qualitative" reasoning, which allows one to reconstruct 
piecewise the underlying dynamic of a system is basically an "interpretative7' 
theory (an hermeneutic theory, pedantically). To my view, this is the most 
interesting element brought in by C.T. Whether such an approach-which by 
itself does not lead to prediction-may be termed scientific or merely "philosophi- 
cal", is a matter of definition. It is certainly scientific by the techniques used-if 
not by its practical results. 

Although no clear-cut example of this procedure is known up to now, one 
may hope that C.T. may be very useful in statistics. For it is fair to say that statistics 
presently is very far from a complete theory. What finally is statistics about? If we 
submit a system to a series of experiments, we end finally with a cloud of points in 
the Euclidean space U of observables. Statistics is nothing but the interpretation 
of clouds of points. Now the most obvious approach to interpret such a cloud in U 
will be to construct a space M of hidden parameters, and then in the product 
M x  U, to form a deterministic (ergodic) dynamical system r such that the 
projection on U of an invariant equiprobable distribution on l?cMX U may 
generate the given distribution of points in U. Strangely enough, it does not seem 
that statistics did conceive its task that way. Usually statistics oscillates between 
two viewpoints: either the given cloud should be concentrated along a sub- 
manifold of U, thus describing a system of quantitative laws governing the 
observables, or the cloud should be concentrated in a central point, and noise 
only explains the deviation from this center. But what happens if the cloud 
exhibits some clear-cut morphology, such as boundary lines, corners, or triple 
points? Statistics is completely hopeless in front of these situations, and the 
specialist has to devise "ad hoc" explanations for these singularities of shape of 
the distribution. Catastrophe theory which knows how the projection of critical 
values looks generically, may interpret these accidents as singularities of a 
projection from M X  U +  U, and may devise the simplest possible model (M) 
accounting for these singularities. For instance, if in a plane IW*a cloud of points 
exhibit a sharp border line: with increase of the density towards the border (Fig. 2) 
instead of a diffuse pattern on both sides (Fig. 3), then it will be more natural to 
define the cloud of case 1as coming from the projection of a "fold", whereas such 
an interpretation would be irrelevant in case 2. Moreover, the interpretation of 
data in a high dimensional space U may be made difficult by the fact that points are 
given by their coordinates as a table of real numbers; hence the morphology of the 
cloud may well be very difficult to recognize. 

The role of the statistician-in front of these data-is fundamentally the same 
as the role of the diviner in the primitive societies. He has to find the reasons for 
such and such surprising phenomena. Hence his "interpretative7', "hermeneutic" 
function. Now such a task may always be considered also in a game theoretic 
framework. In any game, it is of fundamental importance for a player to guess the 
strategy of his partner. The hermeneutic interpretation may be regarded as an 
attempt to play against a malevolent devil who wants to hide from you his trump 



FIG 2B. Fold associated with Fig. 2 

cards, his strategy, and his rules of behavior. Now the usual probabilistic approach 
with his emphasis on standard distributions (Gauss, Poisson laws), assumes that 
the devil only has a very rudimentary brain, such as the drunkard's behavior which 
generates Brownian motion. A complete statistical theory will necessarily call for 
intermediate situations between a strict determinism, and a completely incoher- 
ent behavior. Catastrophe theory, with its fundamentally morphological approach 
may be very useful in trying to cope with such situations, where our devil has a 
more coherent behavior, a global finality for instance, eventually mixed with 
noise. 

But perhaps one of the most interesting aspects of C.T. is its indifference with 
respect to the properties of the underlying substrate. It may give quite a lot of 
insight without involving the need of a specific information on the substrate itself. 
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In that respect, catastrophe theory may seem very arrogant to specialists, who 
have taken great pains to acquire a rich and detailed information on this substrate 
itself. This is perhaps a reason why C.T. did make so little progress among 
biologists, where nevertheless its prospects look among the most promising. I 
want to give here another example, borrowed from geology. 

As an example of this type of morphological analysis, let me describe here the 
"tectonics of plates" in geology from the catastrophe theory point of view. 
Suppose that on the surfaces s2of the earth, there exists a velocity flow which 
sometimes may be multivalued; each determination being associated with a 
minimum of a potential function V (x; u) as in the E.C.T. scheme. Let us admit 
first the validity of a Maxwell's rule: in each point u, the local minimum (hence the 
local velocity) is the vector x which gives the absolute minimum of V(x, u). Then, 
"generically", the set of catastrophe points where two velocity flows collide will be 
a graph having as only singularities free end points (Fig. 4),boundary lines (Fig. 5 ) ,  
and triple,points (Fig. 6). Moreover there will be basically two types of boundary 
lines: after subtraction of the average velocity, we get either converging lines (Fig. 
7), or diverging lines (Fig. 8). The first one gives rise to orogenesis, as the 
compressed material tends to be lifted upwards in the third dimension (height). 

The second gives rise to "rifts", deep furrows in the earth's crust. This very simple 
interpretation already explains quite a lot of the earth morphology; in particular, 
it settles by the negative the tricky question-still debated among specialists- 
whether plates have to be considered as "solid". As soon as one gets a rift ending 



onto a free end (like the southern extremity of the African rift), there is no point in 
believing that plates may be undeformable. 

If we look at the situation more closely, we will find out that a situation like 
that in Fig. 9 where the shock line is not orthogonal to the compression (or 
dilatation) direction is obviously unstable. The only way to make it stable is to get 

to a broken set of segments perpendicular to the compression (or dilatation) 
direction joined by fault lines along which the two flows slip along each other. 
Such a stepwise structure is found precisely along the Mid-Atlantic Ocean ridge. 
Such slip discontinuities are found in fluid dynamics (Mach reflexion), and they 
occur each time velocity plays a fundamental role in the local state. This example 
clearly shows what can be expected from the use of C.T. (and in particular E.C.T.). 
A global understanding of the morphology, subject to local refinements taking 
into account the precise particularities of the medium. A recent result of V. 
KlCman and G. Toulouse (two Orsay physicists) may go a long way towards the 
classification of structurally stable defects. If a medium has local symmetries 
(described by a pseudogroup (G)), then the function V(x, u )  reaches its minimum 
in x along an orbit (homogeneous space) H under the G isotropy group. Hence 
E.C.T. is no longer valid, but the stable defects are submanifolds W of codim K 
such that the link u of W, which is a (K- 1) sphere, is mapped on the local 
minimum orbit H by a map u+H which is not homotopic to zero (in general a 
fibration). This principle provides a very powerful way to classify stable defects in 
ordered media-liquid crystals, superfluid helium, etc. It shows the profound 
relation between stability and transversality. 
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Conclusion. Perhaps the most interesting feature of C.T. is its ability to 
describe analogies. In some sense, C.T. could be called the theory of analogies; by 
associating with a local situation a singularity of the local dynamics, it provides an 
algebraic way of formalizing the intuitive notion of analogous situations. Even the 
notion of "program" may be to some extent put into a purely geometric 
framework. This theory is admittedly incomplete, it deals only with "actions" 
described grammatically by verbs. Analogies dealing with nouns are far more 
difficult to analyze: they would imply a general theory of regulation for systems: 
external objects and concepts referring to them. Of course, the problem of 
regulation, which was the main aim of N. Wiener's Cybernetics, is still very far out 
of sight. But as the catastrophe theoretical approach does not exclude the 
possibility of considering the temporal evolution of a structure (and of its 
regulation itself), it provides a better way to approach the problem of formalizing 
life dynamics: for the purely technological approach of cybernetics does not allow 
such genetic considerations: a machine has no embryology. At least catastrophe 
theory does not preclude such an attempt. The study of analogy did not progress 
since Aristotelian logics, as the Boolean approach, with its purely extensional way 
of defining logic, has turned its back to a true synthetic logic allowing the 
consideration of meaning. It is there, on this very philosophical ground that I see 
the main interest of catastrophe theory. If at the end of the 17th century, 
somebody would have come, exhibiting Taylor's expansion theorem, and saying 
that such a theorem would help science in finding new phenomena, such a claim 
would have appeared ridiculous. But nevertheless, Taylor's expansion formula is 
a highly useful theorem, even if, in itself, it never did lead to any specific 
experimental discovery. I am inclined to believe that the status of C.T. is of the 
same nature (if not of the same importance). 


