LAS
CIENCIAS
DE LO
ARTIFICIAL
HERBERT A. SIMON
Las ciencias de lo artificial

o incluso como pieza de un programa, no tiene participación directa en la cuestión. Yo he apuntado ya otra explicación diferente. La posibilidad de comunicarse a través de unos campos —en un terreno común— proviene del hecho de que todos cuantos utilizan computadoras de forma compleja están, de hecho, sirviéndose de computadoras para diseñar o para participar en el proceso del diseño. En consecuencia, nosotros, como diseñadores o, mejor, como diseñadores de los procesos de diseño, hemos tenido que ser explícitos, como nunca lo fuimos, con respecto a lo que entraña crear un diseño y a lo que ocurre en tanto se produce la creación.

Las verdaderas cuestiones que son objeto del nuevo comercio libre intelectual entre las muchas culturas son nuestros propios procesos mentales, nuestros procesos de juzgar, decidir, elegir y crear. Importamos y exportamos ideas de una a otra disciplina intelectual, en relación con la forma en que un sistema de procesar información organizado en serie, cual es el hombre —o una computadora o un conjunto formado por hombres y computadoras en cooperación organizada—, resuelve problemas y llega a unos objetivos en medios externos de gran complejidad.

Se ha dicho que el estudio auténtico de la humanidad se basa en el hombre. Pero argumentaba yo que el hombre —o, por lo menos, el componente intelectivo del hombre— puede ser relativamente sencillo; que la mayor parte de la complejidad de su comportamiento puede derivar del ambiente en que está inmerso, de su búsqueda de diseños adecuados. De haber demostrado lo que me proponía, podemos llegar a la conclusión de que, en gran parte, el verdadero estudio de la humanidad consiste en la ciencia del diseño, no sólo como componente profesional de una educación técnica sino como disciplina sustancial para todo hombre educado liberalmente.

LA ARQUITECTURA DE LA COMPLEJIDAD *

En los últimos años se han avanzado algunas propuestas para el desarrollo de una teoría general de los sistemas, que, haciendo abstracción de las propiedades peculiares de los sistemas físicos, biológicos o sociales, fuera aplicable a todos ellos. Cábría pensar que, pese a que el objetivo es laudable, una tal diversidad de sistemas difícilmente podría esperarse tuviese unas propiedades no triviales en común. La metáfora y la analogía pueden ser de utilidad o pueden desorientar. Todo depende de si las similitudes que capta la metáfora son significativas o superficiales.

Acaso no sea totalmente vano, sin embargo, buscar unas propiedades comunes entre diversos géneros de sistemas complejos. Las ideas que se agrupan bajo el nombre de cibernética constituyen, si no una teoría, por lo menos un punto de vista que ha demostrado ser fructífero en un amplio abanico de aplicaciones. Ha sido útil contemplar el comportamiento de sistemas adaptables según los conceptos de realimentación y homeostasis y analizar la adaptabilidad de acuerdo con la teoría

Las ciencias de la artificial

de la información selectiva.° Las ideas de la realimentación y de la información proporcionan un marco de referencia para situar un amplio despliegue de situaciones, al igual que ocurre con las ideas de la evolución, el relativismo, el método axiomatico y el operacionalismo.

En este ensayo quisiéramos hablar de algunas cosas que hemos ido sabiendo acerca de determinados tipos de sistemas complejos con los que hemos tropezado en las ciencias del comportamiento. Los desarrollos que pasare a estudiar surgen en el contexto de los fenómenos específicos, si bien las formulaciones teóricas en sí hacen escasas referencias a los detalles de estructura. En cambio, se refieren primordialmente a la complejidad de los sistemas estudiados sin especificar el contenido exacto de aquella complejidad. Debido a su abstracción, las teorías pueden tener relación — aplicación sería un término demasiado fuerte — con otros tipos de sistemas complejos que se observan en las ciencias sociales, biológicas y físicas.

Al referirme a estos desarrollos, evitaré los detalles técnicos que, por lo general, pueden encontrarse en otros lugares. Describiré cada teoría dentro del contexto particular en que surgió. Después, citaré algunos ejemplos de sistemas complejos, procedentes de terrenos científicos ajenos a la aplicación inicial, con la que parece relacionarse el armazón teórico. Al hacerlo, me referiré a campos de conocimientos en los que no soy experto, ni mucho menos. Tengo por seguro que el lector no tendrá ninguna dificultad en distinguir ejemplos basados en la ociosa fantasía, o en la flagrante ignorancia, de aquellos otros que proyectan algo de luz sobre las formas en que se hace patente la complejidad dondequiera que figure en la naturaleza.

No me lanzaré a una definición formal de los "siste-

mas complejos".°° En términos aproximados, entiendo por sistema complejo el compuesto de gran número de partes que actúan entre sí de una forma no sencilla. En dichos sistemas, es más que la suma de las partes, no ya en sentido último y metafísico sino en el importante sentido pragmático de que, dadas las propiedades de las partes y las leyes de su acción cruzada, no es materia trivial inferir las propiedades del conjunto. Frente a la complejidad, un reduccionista en principio puede ser al mismo tiempo un holista pragmático.°°°

Los cuatro apartados que siguen a continuación consideran cuatro aspectos de la complejidad. El primero brinda algunos comentarios sobre la frecuencia con que la complejidad adopta la forma de jerarquía; el sistema complejo está compuesto de subsistemas que, a su vez, tienen sus propios subsistemas, etcétera. El segundo apartado teoriza acerca de la relación entre la estructura de un sistema complejo y el tiempo que necesita para emergir a través de procesos evolutivos; de modo especial, arguye que los sistemas jerárquicos evolucionarán con mucha mayor rapidez que los sistemas no jerárquicos de dimensiones comparables. El tercer apartado explora las propiedades dinámicas de sistemas organizados jerárquicamente y demuestra cómo pueden ser descompostos en subsistemas para analizar su comportamiento. El cuarto el argumenta la relación entre sistemas complejos y sus descripciones.

° John R. Platt, «Properties of Large Systems That Go beyond the Properties of Their Chemical Sub-groups», Journal of Theoretical Biology, 1: 342-358 (1961). Dado que el reduccionismo holístico constituye una importante causa de guerra entre científicos y humanistas, tal vez cabría esperar que no se negocie la paz entre las dos culturas siguiendo las directrices del compromiso apuntado. A medida que vaya avanzando, añadiré alguna cosa más acerca de la complejidad en el arte al igual que en el terreno de las ciencias naturales. Debo insistir en el pragmatismo de mi holismo para distinguirlo de la postura adoptada por W. M. Elsasser en The Physical Foundation of Biology (Nueva York: Pergamon Press, 1958).
Las ciencias de la artificial

Así pues, el tema que aquí tengo por central es que la complejidad adopta a menudo la forma de jerarquía y que los sistemas jerárquicos tienen ciertas propiedades independientes de su contenido específico. La jerarquía, argüí, es uno de los esquemas estructurales básicos que utiliza el arquitecto de la complejidad.

Sistemas jerárquicos

Por sistema jerárquico, o jerarquía, entiendo un sistema compuesto de subsistemas relacionados entre sí, en el que cada uno es jerárquico, dentro de la estructura, del que le sigue a continuación, hasta llegar al nivel más bajo del subsistema elemental. En la mayoría de los sistemas de la naturaleza, resulta algo arbitraria la fragmentación y la adopción de unos subsistemas como elementales. La física hace un gran uso del concepto de "partícula elemental", pese a que las partículas poseen una desconcertante tendencia a no permanecer elementales durante mucho tiempo. No hace más que un par de generaciones que los mismos átomos eran partículas elementales; hoy, a ojos del físico nuclear, constituyen sistemas complejos. Para determinados fines, en astronomía, estrellas enteras, galaxias incluso, pueden ser consideradas como subsistemas elementales. En cierto tipo de investigación biológica, una célula puede ser tratada como un subsistema elemental; en otro, como una molécula proteínica; en otro más, como un residuo aminoaácido.

El porqué un científico tiene el derecho a tratar como elemental un subsistema que, de hecho, es extraordinariamente complejo constituye una de las cuestiones que pasaremos a tratar. Por el momento, aceptaremos el hecho de que los científicos proceden constantemente de esta forma y que, si son científicos concienzudos, saben salirse con la suya.

La arquitectura de la complejidad

Etimológicamente, la palabra "jerarquía" ha tenido un sentido más restringido que el que le doy en este lugar. El término se ha utilizado en forma generalizada para referirse a un sistema complejo en el que cada uno de los subsistemas está subordinado por una relación de autoridad al sistema al que pertenece. Más exactamente, en una organización jerárquica formal, cada sistema consiste en un "patrón" y en todo un conjunto de subsistemas subordinados. Cada uno de los subsistemas tiene un "patrón", que es el subordinado inmediato del patrón del sistema. Queremos considerar sistemas en los que las relaciones entre los subsistemas sean más complejas que en la jerarquía formal organizada que acabamos de describir. Queremos abarcar sistemas en los que no exista la relación de subordinación entre los subsistemas. (En realidad, incluso en las organizaciones humanas, la jerarquía formal no existe más que en teoría; la verdadera organización en carne y huesos presenta muchas relaciones entre sus diferentes partes que nada tienen que ver con los límites de la autoridad formal). A falta de un término mejor, utilizaré la palabra "jerarquía" en el sentido más amplio, según la presentaba en los párrafos anteriores, para referirme a todos los sistemas complejos analizables en sucesivos conjuntos de subsistemas y hablaré de "jerarquía formal" cuando quiera referirme al concepto más especializado.

Sistemas sociales

He expuesto ya un ejemplo de un tipo de jerarquía que suele darse en las ciencias sociales: una organiza-

* El término matemático "división" no puede aplicarse aquí a lo que yo llamo una jerarquía; puesto que el conjunto de subsistemas y los subconjuntos siguientes de cada uno de ellos define la división, en forma independiente de cualquier sistema de relaciones entre los subconjuntos. Por "jerarquía" quiero indicar la división en conjunción con las relaciones que se establecen entre sus partes.
Las ciencias de lo artificial

ción formal. Las empresas comerciales, el equipo gubernamental, las universidades cuentan con una estructura visible de piezas-dentro-de-piezas. Pero las organizaciones formales no son las únicas, ni siquiera las más corrientes de entre las jerarquías sociales. Casi todas las sociedades poseen unas unidades elementales llamadas familias, que pueden agruparse en aldeas o tribus y éstas en agrupaciones más grandes y así sucesivamente. Si confeccionamos una carta en la que aparezcan las interacciones sociales, una carta que reproduzca los contactos que se establecen, las acumulaciones de densa interacción de la carta ofrecerán una estructura jerárquica perfectamente definida. Las agrupaciones de esta estructura pueden definirse en forma operativa de acuerdo con un cierta medida de frecuencia de interacción en esta matriz sociométrica.

Sistemas biológicos y físicos

La estructura jerárquica de los sistemas biológicos constituye un hecho corriente. Si tomamos a la célula como ladrillo del edificio, encontramos células organizadas en tejidos, tejidos en órganos, órganos en sistemas. Si procedemos por debajo de la célula, encontramos en las células animales unos subsistemas claramente definidos, por ejemplo: núcleo, membrana celular, microsomas, mitocondrias, etcétera.

La estructura jerárquica de muchos sistemas físicos está igualmente diferenciada. He citado ya las series principales. A nivel de microscopio tenemos particulas elementales, átomos, moléculas y macromoléculas. A nivel macroscópico tenemos sistemas de satélites, sistemas planetarios, galaxias. La materia se encuentra distribuida en el espacio de una forma marcadamente irregular. Las distribuciones más fortuitas que encontramos, los gases, no son distribuciones fortuitas de parti-
Las ciencias de lo artificial

físicas y biológicas, por un lado, y jerarquías sociales, por otro. La mayoría de jerarquías físicas y biológicas se describen en términos espaciales. Detectamos los elementos de una célula del mismo modo que detectamos las pasas en un pastel: son subestructuras visiblemente diferenciadas, localizadas espacialmente dentro de la estructura más grande. Por otro lado, nos propone mos identificar jerarquías sociales no a través de la observación de quién vive cerca de quién, sino observando a quién interactúa con quién. Pueden reconciliarse estos dos puntos de vista definiendo la jerarquía en términos de intensidad de la interacción, pero observando que en la mayoría de sistemas biológicos y físicos una interacción relativamente intensa implica una proximidad espacial relativa. Una de las interesantes características propias de las células nerviosas y de los cables de teléfono es que permiten unas especificas interacciones intensas a grandes distancias. En la medida en que se canalizan las interacciones a través de comunicaciones especializadas y sistemas de transporte, la proximidad espacial se hace menos determinativa de la estructura.

Sistemas simbólicos

En los ejemplos que he expuesto hasta aquí he omitido una clase muy importante de sistemas: los sistemas de producción simbólica humana. Un libro es una jerarquía en el sentido en que yo utilizo el término. Por lo general, está dividido en capítulos, los capítulos en apartados, los apartados en párrafos, los párrafos en oraciones, las oraciones en cláusulas y frases, las cláusulas y frases en palabras. Podemos tomar las palabras como unidades elementales o seguir subdividiéndolas, como suele hacer el lingüista, en unidades más pequeñas. Si el libro tiene carácter narrativo, puede dividirse en episodios en lugar de apartados, pero siempre podrán hacerse divisiones.

La arquitectura de la complejidad

La estructura jerárquica de la música, basada en unidades tales como los movimientos, las partes, los temas, las frases, es de todos conocida. La estructura jerárquica de los productos de las artes pictóricas es más difícil de caracterizar, si bien diré más adelante algunas cosas a este respecto.

La evolución de los sistemas complejos

Permitaseme presentar la cuestión de la evolución por medio de una parábola. Había una vez dos relojeros, cuyos nombres eran Hora y Tempus, que hacían relojes de gran belleza. Ambos eran tenidos en muy alta estima y los teléfonos de sus talleres sonaban con mucha frecuencia: siempre tenían nuevos clientes que acudían a ellos con sus llamadas. Pese a ello, Hora iba prosperando en tanto que Tempus era cada vez más pobre, más pobre, hasta que acabó por perder incluso el taller. ¿Cuál era el motivo?

Los relojes que hacían aquellos dos hombres se componían de unas 1.000 piezas cada uno. Tempus tenía un modo de trabajar que si, por ejemplo, tenía un reloj a medio montar y debía dejarlo — para contestar al teléfono, pongamos por caso — se le desmontaba inmediatamente, con lo que se veía obligado a comenzar por el principio para reunir todos los elementos. Cuanto más éxito tenían sus relojes entre los clientes, más le telefoneaban éstos y más difícil le resultaba disponer del tiempo necesario para poder realizar su labor sin interrupción.

Los relojes que hacía Hora no eran menos complejos que los de Tempus. Pero había concebido su montaje de forma que agrupaba subconjuntos formados por diez elementos cada uno y que incorporaba separatamente.
Las ciencias de lo artificial

Diez de estos subconjuntos constituyen un subconjunto más grande. El reloj completo estaba formado por un sistema de diez de estos últimos subconjuntos. De esta forma, cada vez que Hora debía abandonar un reloj a medio montar para contestar al teléfono no perdía más que una pequeña parte de trabajo, por lo que montaba los relojes en sólo una fracción del tiempo que invertía Tempus.

Resulta bastante fácil hacer un análisis cuantitativo de la relativa dificultad del trabajo de Tempus y de Hora. Supongamos que la probabilidad de que se produjese una interrupción mientras se incorporaba una pieza a un conjunto a medio montar es p. Entonces la probabilidad de que Tempus pudiese terminar un reloj empezado sin que mediasen una interrupción sería $(1-p)^{10}$, número pequeño aún que p equivala a 0,001 o menos aún. Cada interrupción costaría, por término medio, el tiempo necesario para montar $1/p$ piezas (el número que se tenía montado antes de producirse la interrupción). Por otro lado, Hora debía completar 111 subconjuntos, formados cada uno por diez piezas. La probabilidad de no ser interrumpido al formar cada uno de ellos equivale a $(1-p)^{10}$, por lo que cada interrupción no le costaría aproximadamente más que el tiempo exigido para reunir cinco piezas.\(^7\)

\(^7\) Las especulaciones acerca de la rapidez de la evolución fueron suscitadas por vez primera por la aplicación realizada por H. Jacobson de la teoría de la información a la estimación del tiempo necesario para la evolución biológica. Véase su trabajo «Information, Reproduction, and the Origin of Life», en American Scientific, 43: 119-127 (enero 1958). Aportándose en consideraciones termodinámicas puede estimarse la cantidad de aumento en la entropía que se produce cuando un sistema complejo se descompone en sus elementos. Véase, por ejemplo, R. B. Setlow y E. C. Pollard, Molecular Biophysics (Reading, Mass.: Addison-Wesley, 1962), págs. 63-65 y las referencias allí citadas. Pero la entropía es el logaritmo de una probabilidad, de ahí que la información, negativa de la entropía, pueda ser interpretada como el logaritmo del recíproco de la probabilidad: la «improbabilidad», por así decirlo. La idea crucial en el modelo de Jacobson es que el tiempo que se espera exigir el sistema para llegar a un estado particular es inversamente proporcional a la probabilidad del estado, de aquí que aumente exponencialmente con la cantidad de información (o entropía) del estado.

Siguiendo esta línea de argumentación, aunque sin introducir el concepto

La arquitectura de la complejidad

Ahora bien, si p equivale más o menos a 0,01 —es decir, que existe una probabilidad entre cien de que cada relojero sea interrumpido al incorporar una parte a un conjunto, entonces un cálculo directo demostraría que Tempus, por término medio, necesitaba unas 4,000 veces más tiempo para montar un reloj que Hora.

Llegamos a este resultado de la forma siguiente:

1. Hora debe formar 111 veces tantos grupos completos para cada reloj como Tempus; pero
2. Tempus, por término medio, perderá 20 veces tanto trabajo por cada agrupación interrumpida como Hora (un promedio de 100 partes contra 5); y
3. Tempus terminará un montaje sólo 44 veces por cada millón de intentos $(0,99^{100} = 44 \times 10^{-6})$, en tanto que Hora lo terminará nueve de cada diez veces $(0,99^{10} = 9 \times 10^{-1})$. De aquí que Tempus tenga que hacer 20,000 intentos por agrupación montada que Hora. $(9 \times 10^{-1})/ (44 \times 10^{-6}) = 2 \times 10^5$. Multiplicando estas tres razones, tenemos:

\[
\frac{1}{111} \times 100 / 5 \times 0,99^{10} / 0,99^{100} = 1 / 111 \times 20 \times 20,000 \approx 4,000
\]

Evolución biológica

¿Qué enseñanzas podemos recoger de la parábola por lo que respecta a la evolución biológica? Interpretémos un subconjunto, parcialmente terminado, formado por k partes elementales, como la coexistencia de k

de niveles y subconjuntos estables, Jacobson llegó a una estimación del tiempo exigido para la evolución tan grandes que resultaban imposibles. Nuestro análisis, conducido por los mismos caminos, pero atentos a las formas intermedias estables, produce unas estimaciones mucho más bajas.
Las ciencias de lo artificial

partes en un pequeño volumen, ignorando sus orientaciones respectivas. El modelo admite que las partes entran en el volumen a un ritmo constante, si bien subsiste una constante probabilidad, \(p \), de que se disperse una de las partes antes de añadir la siguiente, a menos que el agrupamiento alcance un nivel estable. Estas suposiciones no son particularmente realistas. No hay duda que subvaloran la disminución de la probabilidad de conseguir el agrupamiento al aumentar sus dimensiones. De aquí que los supuestos disminuyan — probablemente por un gran factor — la relativa ventaja de una estructura jerárquica.

Pese a que no sea posible tomar en serio la valoración numérica, las enseñanzas que de ella se desprenden para la evolución biológica son tan claras como directas. El tiempo exigido para la evolución de una forma compleja a partir de unos elementos simples depende exactamente de los números y distribución de formas potenciales intermedias estables. De modo particular, si existe una jerarquía de subconjuntos potenciales estables, con el mismo radio aproximadamente, \(s \), a cada nivel de la jerarquía, entonces el tiempo exigido para un subconjunto puede suponerse será aproximadamente el mismo a cada nivel, es decir, proporcional a \(1/(1-p)^n \).

El tiempo necesario para el montaje de un sistema de \(n \) elementos será proporcional a \(\log n \), es decir, al número de niveles del sistema. Podría decirse — con intención más ilustrativa que literal — que el tiempo exigido para la evolución de organismos multicelulares a partir de organismos unicelulares podría ser del mismo orden de magnitud que el tiempo exigido para la evolución de organismos unicelulares a partir de macromoléculas. Podría aplicarse la misma argumentación a la evolución de las proteínas a partir de los aminoácidos, de las moléculas a partir de los átomos, de los átomos a partir de partículas elementales.

Estoy seguro de que a cualquier biólogo, químico o físico han de ocurrírsele toda una caterva de objeciones a esquema tan simplificado. Antes de pasar a materias que conozco mejor, citaré tres de estos problemas, dejando el resto a la atención de los especialistas.

En primer lugar, pese a las subidas de tono de la parábola del relojero, la teoría no adopta ningún mecanismo teleológico. Las formas complejas pueden surgir de las simples en virtud de procesos fortuitos. (Más adelante se exporará otro modelo que demuestra esta aseveración con toda claridad). Se orienta el esquema gracias a la estabilidad de las formas complejas, una vez éstas se producen. Pero esto no es otra cosa que la supervivencia de lo más ajustado, es decir, de lo estable.

En segundo lugar, no todos los grandes sistemas se presentan en forma jerárquica. La mayoría de los polímeros, como por ejemplo el nylon, son simplemente cadenas lineales de grandes números de componentes idénticos: los monómeros. No obstante, por lo que respecta al caso presente, consideraremos tal estructura como una jerarquía con un espacio de uno: el caso limitado. Para una cadena, sea cual fuere su longitud, representa un estado de relativo equilibrio.

En tercer lugar, la evolución de sistemas complejos a partir de elementos simples no supone nada, de un modo u otro, en relación con el cambio en entropía de todo el sistema. Si el proceso absorbe energía libre, el sistema completo tendrá una entropía más pequeña que los elementos; si libera energía libre, se producirá lo contrario. La primera alternativa es la válida para la mayor parte de sistemas biológicos, y la entrada neta de energía libre debe ser adoptada por el sol o alguna otra...

1 Existe una teoría muy bien desarrollada de la dimensión polimérica, basada en modelos de reunión fortuita. Véase, por ejemplo, P. J. Flory, Principles of Polymer Chemistry (Ithaca: Cornell University Press, 1953), Capítulo 8. Dado que todos los subconjuntos de la teoría de la polimerización son estables, la limitación de crecimiento molecular depende de «envenener» los grupos terminales con impurezas o formación de ciclos más que en la ruptura de cadenas parcialmente formadas.
Las ciencias de lo artificial

fuente, en el caso que la segunda ley de termodinámica no tenga que ser violada. Por lo que se refiere al proceso evolutivo que acaemos a describir, los equilibrios de los estados intermedios necesitan contar únicamente con un estabilidad local y no global y pueden ser estables solamente en estado de continuidad, es decir, mientras existe una fuente externa de energía libre susceptible de ser aportada.9

Puesto que los organismos no son sistemas activamente cerrados, no hay forma de deducir el rumbo, y mucho menos el ritmo de la evolución partiendo de consideraciones termodinámicas. Las estimaciones indican que la cantidad de entropía, medida en unidades físicas, que entraña la formación de un organismo biológico unicelular es insignificante pero pequeña: alrededor de

\[-10^{-11} \text{ grado/cal.}\]

La «improbabilidad» de la evolución no tiene nada que ver con esta cantidad de entropía que produce toda célula bacteriana, cada generación. En este sentido, la cantidad de información inadecuada en relación con la rapidez de la evolución aparece también con el hecho de que se necesita exactamente tanta información para «copiar» una célula por el proceso reproductivo como para producir la primera célula por medio de la evolución.

El efecto de la existencia de formas estables intermedias ejerce un poderoso efecto en la evolución de formas complejas que pueden ser comparadas a los sorprendentes efectos de los catalizadores sobre tasas de reacción y distribución constante de productos de reacción en

10 Véase Linschitz, op. cit. Esta cantidad,

\[-10^{-11} \text{ grado/cal.}\]

corresponde aproximadamente a 10^{10} fragmentos de información.

La arquitectura de la complejidad

sistemas abiertos.10 En ningún caso el cambio de la entropía nos brinda una orientación para el comportamiento del sistema.

Resolución del problema como selección natural

Pasemos ahora a ciertos fenómenos que no presentan una vinculación evidente con la evolución biológica: procesos humanos de resolución de problemas. Consideremos, por ejemplo, la tarea de descubrir la prueba de un teorema difícil. El proceso puede ser descrito — y a menudo éste es el caso — como una búsqueda a través de un laberinto. Partiendo de axiomas y de teoremas previamente demostrados, se intentan varias transformaciones autorizadas por las reglas de los sistemas matemáticos a fin de obtener nuevas expresiones. Estas son modificadas a su vez hasta que, gracias a la persistencia y a la buena suerte, se da con una secuencia o un camino de transformaciones que conduce al objetivo.

El proceso normalmente entraña muchas pruebas y errores. Se intentan varios caminos, algunos se abandona, otros se prosiguen. Antes de dar con una solución, pueden explorarse muchos caminos de este laberinto. Cuanto más difícil y original es el problema, más grande será la cantidad de pruebas y errores exigidos para dar con una solución. Al mismo tiempo, las pruebas y errores no son totalmente fortuitos ni hechos a ciegas; de hecho, se trata de un procedimiento extremadamente selectivo. Las nuevas expresiones que se obtienen transformando las que se dan, se estudian para ver si representan un avance hacia el objetivo que se persigue. Los indicios de avance motivan la continuación del avance en la misma dirección; la ausencia de avance marca el
Las ciencias de lo artificial

abandonó de uno de los caminos intentados. La resolución de problemas exige pruebas y errores de carácter selectivo.12

Una cierta reflexión revela que los indicios reales de avances observados en el proceso de resolución de problemas que las formas estábles intermedias en el proceso biológico evolutivo. De hecho, podemos considerar la parábola del relojero y aplicarla a la resolución de problemas. En la resolución de problemas, un resultado parcial que representa un avance detectable hacia una meta desempeña el papel de un subconjunto estable.

Supongamos que la tarea consiste en abrir una caja fuerte cuya cerradura tiene 10 discos, cada uno de ellos con 100 combinaciones posibles, numeradas del 0 al 99. ¿Cuánto tiempo se tardará en abrir la caja por el procedimiento de ir probando y equivocándose en pos de la combinación adecuada? Puesto que hay 10^{10} combinaciones posibles, cabe esperar que se examinarán alrededor de la mitad de las mismas, por término medio, antes de encontrar la correcta; es decir, 50 billones de billones de combinaciones. Supongamos, sin embargo, que la caja está averiada, de forma que se escucha un chasquido cada vez que se hace girar el disco hasta dar con la combinación adecuada. Ahora bien, cada disco puede ajustarse independientemente y no necesita volver a tocarse cuando se opera con los demás. El número total de combinaciones que deben intentarse es de $10 \times 50 = 500$. La tarea de abrir la caja fuerte ha experimentado una variación, gracias a las pistas ofrecidas por los chas-

La arquitectura de la complejidad

quidos, pasando de ser algo prácticamente irreízable a un trabajo totalmente banal.13

Durante los últimos cinco años se han aprendido muchas cosas acerca de la naturaleza de estos laberintos que representan tareas humanas corrientes encaminadas a la resolución de problemas, como demostración de teoremas, solución de «puzzles», partidas de ajedrez, inversions, compensación de líneas de montaje, para citar sólo algunos de ellos. Cuanto hemos sabido en relación con estos laberintos apunta a una misma conclusión: que la resolución de problemas a nivel humano, desde la más disparatada a la más perspicaz, no supone otra cosa más que una variación de combinaciones de intentos y errores y una actividad de selección. La selección se basa en una cierta heurística, que sirve para indicar qué caminos habrá que intentar primero y cuáles son los filones más prometedores. No necesitamos postular procesos más sofisticados que los que supone la evolución orgánica para explicar qué laberintos enormes se recortan hasta quedar reducidos a unas dimensiones perfectamente razonables.14

Las fuentes de la selección

Cuando examinamos las fuentes de las que el sistema

13 Este contundente ejemplo fue facilitado por D. P. Simon, Ashby, op. cit., pág. 239, denominó a la selectividad que extraían situaciones de este género: selección por componentes. La reducción de tiempo todavía más grande, resultado de la jerarquización en este ejemplo, comparado con la metáfora del relojero, se debe al hecho de que una buquila fortuita de la correcta combinación se encuentra formando parte del primer caso, en tanto que en el último las partes se reúnen en el orden adecuado. No está claro cuál de estas metáforas proporciona el mejor modelo para la evolución biológica, pero podemos tener la seguridad de que la metáfora del relojero aporta una estimación enormemente conservadora de los aborres resultados de la jerarquización. El ahorro puede dar una estimación excesivamente alta porque adopta todas las combinaciones posibles de los elementos que reducen una igual probabilidad.

Las ciencias de lo artificial
de resolución de problemas, o el sistema desarrollado, según el caso, deriva sus procedimientos de selección, descubrimos que ésta puede equipararse siempre a cierto tipo de realimentación de informaciones a partir del medio.

Consideremos primero el caso de la resolución de problemas. Existen dos procedimientos básicos aplicados a la selectividad. Uno de ellos ha sido ya mencionado: se intentan diversos caminos, se anotan las consecuencias de haberlos seguido y se utiliza la información para dirigir la prosecución de la búsqueda. Del mismo modo: en la evolución orgánica, se materializan varios complejos, aunque sólo sea de forma evanescente, y los que permanecen estables aportan los nuevos ladrillos para seguir construyendo. Esta es la información acerca de configuraciones estables, y no la libre energía ni la negentropía proveniente del sol, la que dirige el proceso de la evolución y aporta aquella selectividad esencial que explica su rapidez.

La segunda fuente de la selectividad en la resolución de problemas es la experiencia previa. Esto se revela de forma particularmente clara cuando el problema a resolver es parecido al que se ha resuelto anteriormente. Entonces, gracias al procedimiento de volver a intentar los mismos caminos que condujeron a la primera solución, u otros análogos, se reduce enormemente —por no decir que se elimina totalmente— el sistema de intentos y equivocaciones.

¿Qué es lo que en la evolución orgánica corresponde a este último género de información? Su análogo más próximo es la reproducción. Una vez alcanzado el nivel de los sistemas autorreproductores, puede multiplicarse indefinidamente un sistema complejo, una vez obtenido. La reproducción, en efecto, permite la herencia de unas características adquiridas, aunque por supuesto en relación con el material genético; es decir, únicamente pueden heredarse aquellas características que fueron adquiridas por los genes. Volveremos a insistir en la cuestión de la reproducción en el apartado final de este ensayo.

Sobre los imperios y la construcción de los imperios

No hemos agotado las categorías de sistemas complejos a las que la argumentación del relojero podría aplicarse. Filipo formó un imperio macedónico y lo cedió a su hijo; más adelante se combinó con el subconjunto pésico y otros hasta formar el sistema más grande perteneciente a Alejandro. A la muerte de Alejandro, su imperio no se desmoronó para convertirse en polvo sino para fragmentarse en aquellos subsistemas importantes que anteriormente lo habían formado.

La argumentación referente al relojero supone que Alejandro nació en un mundo en el que existían previamente unos importantes sistemas políticos estables. Allí donde no se cumplía esta condición, como por ejemplo en las fronteras escita e indias, Alejandro encontró difícil la tarea de construir un imperio. De igual modo, T. E. Lawrence, al organizar la revuelta árabe contra los turcos, se encontró maniatado por el carácter de los ladrillos estables más importantes: las aisladas y suspiroces tribus del desierto.

El arte histórico concede mayor importancia al hecho particular válido que a la generalización tendenciosa. No voy, pues, a seguir los derroteros por los que me guía mi fantasía, sino que dejaré esta cuestión en manos de los historiadores para que sean ellos quienes decidan si pueden ganar algo en favor de la interpretación de la historia partiendo de una teoría abstracta de sistemas jerárquicos complejos.
Las ciencias de lo artificial

Conclusión: la explicación evolutiva de la jerarquía

Hemos demostrado hasta aquí que los sistemas complejos evolucionarán mucho más rápidamente a partir de sistemas simples cuando existen unas formas intermedias estables que cuando no figuran éstas. Las formas complejas resultantes serán jerárquicas en el primer caso. No tenemos sino que dar la vuelta a la argumentación para explicar el observado predominio de unas jerarquías entre los sistemas complejos que la naturaleza nos ofrece. Entre las formas complejas posibles, las jerarquías son las únicas que tienen tiempo de evolucionar. La hipótesis de que la complejidad será jerárquica no hace ninguna distinción entre jerarquías muy planas, como cristales, tejidos y polímeros, y sus formas intermedias. En realidad, en los sistemas complejos que encontramos en la naturaleza, destacan ejemplos de ambas formas. Una teoría más completa que la desarrollada aquí tendría seguramente algo que aportar en relación con los determinantes de la amplitud del alcance de estos sistemas.

Sistemas casi descomponibles

En los sistemas jerárquicos podemos distinguir entre las interacciones entre subsistemas, por una parte, y las interacciones dentro de subsistemas —es decir, entre las partes de aquellos subsistemas— por otra. Las interacciones a diferentes niveles pueden ser —y a menudo lo son— de diferentes órdenes de magnitud. En una organización formal, generalmente se producirá más interacción entre dos empleados adscritos a un mismo departamento que entre dos empleados de diferentes departamentos. Entre las sustancias orgánicas, las fuerzas intermoleculares serán por lo general más débiles que las fuerzas moleculares y las fuerzas moleculares más débiles que las fuerzas nucleares.

En un gas enrarecido, las fuerzas intermoleculares serán neglibles comparadas con las que unen las moléculas; en muchos aspectos, pueden tratarse las partículas individuales como si fueran mutuamente independientes. Será posible describir este sistema como descomponible en los subsistemas formados por partículas individuales. A medida que el gas va haciéndose más denso, las interacciones moleculares se hacen más considerables. Pero hasta cierto punto, podemos tratar el caso descomponible como límite y como primera aproximación. Podemos utilizar una teoría de gases perfectos, por ejemplo, para describir aproximadamente el comportamiento de verdaderos gases, caso de que no sean demasiado densos. Como segunda aproximación podemos pasar a una teoría de sistemas casi descomponibles, donde las interacciones entre los subsistemas son leves pero no negligibles.

Ciertos tipos de sistemas jerárquicos por lo menos pueden ser enfocados acertadamente como sistemas casi descomponibles. Las principales consecuencias teóricas de este enfoque pueden resumirse en dos proposiciones:

a) en un sistema casi descomponible, el comportamiento a corto plazo de cada uno de los subsistemas componentes es más o menos independiente del comportamiento a corto plazo de los demás componentes; b) a largo plazo, el comportamiento de cada uno de los componentes depende, en forma conjunta únicamente, del comportamiento de los componentes restantes.

Permitaséme exponer un ejemplo sencillo y muy concreto de un sistema casi descomponible. Considérese

Las ciencias de lo artificial

un edificio cuyas paredes exteriores permiten un perfecto aislamiento térmico del medio ambiente. Tomaremos dichas paredes como confinales de nuestro sistema. El edificio se encuentra dividido en muchos apartamentos y las paredes que separan a los mismos son buenos, aunque no perfectos, aislantes. Las paredes entre los apartamentos son los límites de nuestros principales subsistemas. Cada apartamento está dividido por medio de unos tabiques en varios compartimentos, si bien dichos tabiques apenas si aíslan los compartimentos mencionados. En cada uno de estos compartimentos hay un termómetro. Supongamos que en el momento de realizar nuestra primera observación del sistema existe una gran diferencia de temperatura entre compartimento y compartimento y entre apartamento y apartamento: los diferentes cubículos del edificio se hallan en un estado de desequilibrio térmico. Al efectuar nuevas lecturas de la temperatura, ¿qué descubrimos? Habrá una diferencia de temperatura muy escasa entre los compartimentos situados en un mismo apartamento, pese a que subsistirá todavía una gran diferencia de temperatura entre los apartamentos. Al realizar una nueva lectura al cabo de unos cuantos días, encontramos una temperatura casi uniforme en todo el edificio; las diferencias de temperatura entre los apartamentos han desaparecido virtualmente.

Este proceso tendente al equilibrio se describe formalmente estableciendo las acostumbradas ecuaciones de flujo calórico. Las ecuaciones pueden representarse por la matriz de sus coeficientes, \(r_{ij} \), donde \(r_{ij} \) representa el ritmo de la corriente calórica al pasar del compartimento \(i \) al \(j \) por diferencia en grados de sus temperaturas. Si los compartimentos \(i \) y \(j \) tienen un tabique co-

mán, \(r_{ij} \) será cero. Si los compartimentos \(i \) y \(j \) están separados por la pared de un apartamento, \(r_{ij} \) no será cero pero sí un número pequeño. De aquí que, al agrupar todos los compartimentos del mismo apartamento, se puede disponer la matriz de los coeficientes de forma que todos sus elementos grandes se encuentren dentro de una hilera de submatrices cuadradas a lo largo de la diagonal principal. Todos los elementos situados fuera de estos cuadrados en diagonal serán cero o un número muy pequeño (véase Figura 7). Tómese un número pequeño cualquiera, \(e \), como límite superior de los elementos exteriores a la diagonal. Una matriz que posea estas propiedades será la que llamemos matriz casi descomponible.

Ahora bien, se ha demostrado que un sistema dinámico que puede describirse por medio de una matriz casi descomponible posee las propiedades, mencionadas anteriormente, de un sistema casi descomponible. En el sencillo ejemplo que hemos presentado para ilustrar la corriente calórica esto significa que, a la corta, cada apartamento llegará a una temperatura de equilibrio (término medio de las temperaturas iniciales de sus compartimentos) de forma casi independiente de los demás; y que cada apartamento permanecerá aproximadamente en un estado de equilibrio a lo largo de aquel período más largo durante el cual se establece un equilibrio térmico total en todo el edificio. Una vez se ha llegado al equilibrio entre las habitaciones, un solo termómetro en cada habitación permitirá registrar el comportamiento dinámico de todo el sistema: de nada serviría mantener un termómetro en cada compartimento.

La casi descomponibilidad de los sistemas sociales

Según demuestra una ojada a la Figura 7, la casi descomponibilidad constituye una eficaz propiedad para
Las ciencias de lo artificial

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>B1</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td></td>
<td>100</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>100</td>
<td></td>
<td>100</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>100</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>1</td>
<td>2</td>
<td>100</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 7. Un sistema hipotético casi descomponible.

Ateniéndonos al ejemplo de intercambio de calor que figura en el texto, A1, A2 y A3 pueden ser interpretados como compartimentos de un apartamento, B1 y B2 como compartimentos de un segundo apartamento y C1, C2 y C3 como compartimentos de un tercero. Las entradas matriciales son, pues, los coeficientes de difusión del calor entre los compartimentos.

Una matriz, por lo que las matrices en posesión de dicha propiedad describirán sistemas muy especiales: pequeños sistemas de entre todos los que pueden imaginarse. Su escaso número dependerá, por supuesto, de cuál sea la buena aproximación en la que insinuemos. Si exigimos que épsilon sea muy pequeña, pocos sistemas dinámicos encajarán con la definición. Pero hemos visto ya que en el mundo natural los sistemas casi descomponibles no son raros ni mucho menos. Por el contrario, son mucho más raros y menos típicos los sistemas en que cada variable está vinculada con casi igual fuerza a casi todas las demás partes del sistema.

En la dinámica económica, las principales variables son los precios y cantidades de los géneros. Es cierto empíricamente que el precio de un género cualquiera y lo frecuencia con que se intercambia depende en gran medida únicamente de los precios y cantidades de unos pocos géneros más, junto con algunas cifras adicionales, como el nivel medio de los precios u otras medidas conjuntas de actividad económica. Los grandes coeficientes de conexión se relacionan, en general, con las grandes aportaciones de materias primas y productos semi-manufacturados dentro de las industrias y entre las mismas. Una matriz económica de las entradas y salidas, que refleja la magnitud de estas corrientes, revela la estructura casi descomponible del sistema... con una condición. Existe en la economía un subsistema de consumo fuertemente vinculado a variables de la mayor parte de los demás subsistemas. Por consiguiente, debemos modificar ligeramente nuestros conceptos de la descomponibilidad para acomodar la función especial del subsistema de consumo en nuestro análisis del comportamiento dinámico de la economía.

En la dinámica de los sistemas sociales, donde los miembros de un sistema comunican con otros miembros y los influencian, suele ser muy marcada la casi descomponibilidad. Esto es obvio en extremo en las organizaciones formales, donde la relación de autoridad formal conecta a cada miembro de la organización con otro inmediato superior y con un número reducido de subordinados. Desde luego que, en las organizaciones, figuran otras muchas comunicaciones que siguen otros canales distintos que los marcados por las líneas de la autoridad formal. Sin embargo, la mayoría de estos canales conducen de un individuo particular a un número muy limitado de superiores suyos, subordinados y asociados. De aquí que los límites entre los departamentos desempeñen el mismo papel que las paredes en aquel ejemplo relacionado con la propagación del calor.
Las ciencias de lo artificial

Sistemas físicoquímicos

En los sistemas complejos habituales en la química biológica, se evidencia claramente una estructura similar. Tómense los núcleos atómicos de un sistema de este género como partes elementales del sistema y elabórese una matriz de las fuerzas de enlace entre los elementos. Habrá elementos de la matriz de órdenes de magnitud enteramente distintos. El más grande corresponderá generalmente a los enlaces covalentes, el siguiente a los enlaces iónicos, el tercer grupo a los enlaces de hidrógeno y todavía habrá otras uniones más pequeñas que corresponderán a las fuerzas Van der Waals. Si separamos una molécula un poco más pequeña que la magnitud de un enlace covalente, el sistema se descompondrá en subsistemas: las moléculas integrantes. Los enlaces más pequeños corresponderán a los enlaces intermoleculares.

Es cosa sabida que las vibraciones de alta energía, de alta frecuencia se relacionan con los subsistemas físicos más pequeños, las vibraciones de baja frecuencia con los sistemas más grandes en que se reúnen los subsistemas. Por ejemplo: las frecuencias de radiación asociadas con las vibraciones moleculares son mucho más bajas que las asociadas con las vibraciones de los electrones planetarios de los átomos; estos últimos, a su vez, son más bajos que los asociados con los procesos nucleares.

Los sistemas moleculares son sistemas casi descomponibles, en los que la dinámica a corto plazo se relaciona con las estructuras internas de los subsistemas y la dinámica a largo plazo con las interacciones de estos subsistemas.

Un número de aproximaciones importantes utilizadas en física depende, para su validez, de la casi descomponibilidad de los sistemas estudiados. La teoría de la termo dinamica de los procesos irreversibles exige, por ejemplo, el supuesto de un desequilibrio macroscópico pero también de un equilibrio microscópico, que es exactamente la situación descrita en nuestro ejemplo relacionado con el intercambio de calor. De igual modo, los cálculos que se hacen en la mecánica de los quants suelen realizarse tratando las interacciones débiles como productoas de perturbaciones en un sistema de marcadadas interacciones.

Algunas observaciones acerca del alcance jerárquico

Para entender por qué a veces el alcance de la jerarquía es muy amplio —como ocurre en el caso de los cristales— mientras que en otras es muy reducido, hay que analizar las interacciones con más detenimiento. Generalmente, la consideración básica es la medida en que la interacción entre dos (o unos pocos) subsistemas excluye la interacción de estos subsistemas con los demás. Examinemos primero algunos ejemplos físicos.

Considerése un gas de moléculas idénticas, cada una de las cuales es capaz de formar enlaces covalentes, en determinada forma, con otras. Supongamos que es posible asociar a cada átomo un número específico de enlaces que puede mantener simultáneamente. (Es evidente que este número está relacionado con el número que

16 Pata una revisión de las varias clases de fuerzas moleculares e intermoleculares y sus energías de disociación, véase S. E. T. y Pollard, op. cit., Capítulo 8. Las energías de los tipos de enlaces covalentes son del orden de 80 a 100 k cal/mole. Los enlaces iónicos pueden encontrarse entre los mismos niveles; los enlaces provocados por las fuerzas Van der Waals tienen una energía mucho más baja.

17 Características números de onda para las vibraciones, asociados con varios sistemas (el número de onda es el recíproco de la longitud de onda, de aquí que sea proporcional a la frecuencia):
- vibraciones moleculares — 10 a 106 cm⁻¹
- vibraciones superficiales nucleares — 10⁶ a 10⁷ cm⁻¹
- vibraciones planetarios — 10⁶ a 10⁷ cm⁻¹
- rotaciones moleculares — 10⁶ a 10⁷ cm⁻¹
- rotaciones nucleares — 10⁶ a 10⁷ cm⁻¹
Las ciencias de lo artificial

solemos llamar su valencia). Supongamos ahora que se unen dos átomos y que es posible también asociar a la combinación un número específico de enlaces externos que es capaz de mantener. Si este número es el mismo que el asociado con los átomos individuales, el proceso de enlace puede proseguir indefinidamente: los átomos formarán cristales y polímeros de extensión indefinida. Si el número de enlaces de que es capaz la composición es menor que el número asociado con cada una de las partes, el proceso de aglomeración debe entonces llegar a un punto de parada.

Citaremos únicamente algunos ejemplos elementales. Los gases ordinarios no muestran tendencia a la aglomeración porque los múltiples enlaces de los átomos «agotan» su capacidad de interactuar. Mientras que cada átomo de oxígeno posee una valencia dos, las moléculas de O₂ tienen una valencia cero. Inversamente, las cadenas indefinidas de átomos de carbono con un solo enlace son posibles puesto que una cadena de un número cualquiera de tales átomos, cada uno de ellos con dos grupos secundarios, posee una valencia exactamente de dos.

Ahora bien, ¿qué ocurre si tenemos un sistema de elementos que posee capacidad de interacción débil y fuerte a la vez y cuyos enlaces fuertes son susceptibles de agotamiento a través de la combinación? Se formarán subsistemas hasta que toda la capacidad para una energética interacción sea utilizada en su construcción. Estos subsistemas quedarán entonces vinculados por los enlaces más débiles de segundo orden en unos sistemas más grandes. Una molécula de agua, por ejemplo, tiene esencialmente una valencia cero; todos los enlaces covalentes potenciales se encuentran totalmente ocupados por la interacción de las moléculas de hidrógeno y oxígeno. Pero la geometría de la molécula crea un dipolo eléctrico que permite una interacción débil entre el agua y las sales en ella disueltas; de ahí que aparez-

can fenómenos tales como su conductividad electromática.¹⁹

De igual modo, se ha observado que, aunque las fuerzas eléctricas son mucho más fuertes que las fuerzas de gravitación, estas últimas son mucho más importantes que las primeras para los sistemas a escala astronómica. La explicación consiste, como es lógico, en que las fuerzas eléctricas, por ser bipolares, se «agotan» todas en los enlaces de los subsistemas más pequeños y que los equilibrios importantes netos de cargas positivas o negativas no suelen encontrarse generalmente en regiones de dimensiones macroscópicas.

En los sistemas sociales, como en los físicos, suele haber límites para la interacción simultánea de gran número de subsistemas. En el caso social, estos límites se relacionan con el hecho de que un ser humano es más bien un sistema de proceso de información en serie que en paralelo. No puede mantener más que una conversación a un tiempo y pese a ello no limita las porciones del auditorio al que puede dirigirse la comunicación en masa, si limita el número de personas que pueden tomar parte a un mismo tiempo en la mayor parte de las demás formas de interacción social. Aparte de las exigencias que presentan las interacciones directas, la mayoría de funciones imponen tareas y responsabilidades que consumen tiempo. Una persona puede actuar, por ejemplo, de «amiga» de gran número de personas.

Probablemente sea cierto que tanto en los sistemas sociales como físicos, la dinámica de más alta frecuencia está asociada con los subsistemas y la dinámica de baja frecuencia con los sistemas más grandes. Es cosa generalmente admitida, por ejemplo, que las posibles perspectivas de los ejecutivos son tantó más amplias cuanto

Las ciencias de lo artificial

más elevada es su jerarquía dentro de la organización. También es probablemente cierto que tanto la duración media de una interacción entre los ejecutivos como el intervalo medio entre las interacciones sea más grande a alto nivel que a bajo nivel.

Sumario: la casi descomponibilidad

Hemos visto que las jerarquías gozan de la cualidad de la casi descomponibilidad. Las vinculaciones intra-componentes suelen ser más fuertes que las vinculaciones intercomponentes. Esta circunstancia tiene por resultado separar la dinámica de alta frecuencia de una jerarquía —que abarca la estructura interna de los componentes— de la dinámica de baja frecuencia—que comprende la interacción entre componentes. Pasaremos ahora a tratar de las importantes consecuencias que entraña esta separación para la descripción y comprensión de los sistemas complejos.

La descripción de la complejidad

Si pedimos a una persona que dibuje un objeto complejo —por ejemplo, el rostro de un ser humano— casi siempre procederá de una forma jerárquica. Primero, trazará el perfil. A continuación añadirá o incorporará unos rasgos: los ojos, la nariz, la boca, las orejas, el pelo. Si se le pide que añada más detalles, añadirá otros pormenores a cada uno de los rasgos —las pupilas, los párpados, las pestañas, etcétera— hasta llegar a los límites máximos de sus conocimientos anatómicos. La información que posee acerca del objeto está ordenada jerárquicamente en su memoria, al igual que un programa concreto.

Cuando la información se dispone en forma ordenada, resulta fácil añadir más información con respecto a las relaciones internas de las diferentes partes de cada uno de los subgrupos. La información detallada referente a las relaciones de los subgrupos pertenecientes a las diferentes partes no tiene un lugar dentro del programa y corre el probable riesgo de perderse. La pérdida de dicha información y la conservación relacionada con el orden jerárquico constituye una característica sobresaliente que distingue los dibujos de un niño o de una persona profana en dibujo de los dibujos realizados por un artista. (Me refiero a un artista interesado en la representación.)

La casi descomponibilidad y comprensibilidad

De nuestras consideraciones acerca de las propiedades dinámicas de los sistemas casi descomponibles, hemos deducido que, en comparación, se pierde poca información representándolos como jerarquías. Las subpartes pertenecientes a las diferentes partes no hacen sino actuar de forma masiva: los detalles de su interacción pueden permanecer ignorados. Al estudiar la interacción de dos grandes moléculas, por lo general no necesitamos considerar con detalle las interacciones de los núcleos de los átomos pertenecientes a una molécula con los núcleos de los átomos pertenecientes a la otra. Al estudiar la interacción de dos naciones, no necesitamos estudiar con detalle las interacciones de cada ciudadano de la primera nación con cada ciudadano de la segunda.

El hecho, pues, de que muchos sistemas complejos posean una estructura jerárquica casi descomponible
Las ciencias de lo artificial

constituye un importante factor que nos permite comprender, describir e incluso «ver» tales sistemas y sus partes. Acaso debiera exponerse esta proposición en forma totalmente inversa. Si en el mundo hay importantes sistemas que son complejos sin ser jerárquicos, es posible que hasta cierto punto escapen a nuestra observación y a nuestra comprensión. El análisis de su comportamiento supondrá unos conocimientos y unos cálculos tan detallados de las interacciones de sus partes elementales que puede afirmarse que, sin duda, están fuera del alcance de nuestra capacidad de recordar o de calcular.

No trataré de establecer si fue primero la gallina o el huevo: si estamos en condiciones de comprender el mundo porque es jerárquico o si se nos aparece como jerárquico porque aquellos aspectos del mismo que no lo son, escapan a nuestra comprensión y a nuestra observación. He dado ya algunas razones en apoyo de que lo primero es, cuando menos, una verdad a medias, de que la complejidad al evolucionar tiende a ser jerárquica, pero que tal vez esto no sea toda la verdad.

21 Creo que la falacia de la tesis básica de W. M. Elsasser, en The Physical Foundation of Biology, citada anteriormente, esebra en su ignorancia de la simplificación en la descripción de sistemas complejos que deriva de su estructura jerárquica. Así pues (pág. 158):

«Si aplicamos similares argumentos al acoplamiento de reacciones enzimáticas con el sustrato de moléculas proteínas, observamos que al cabo de un período suficiente de tiempo, la información correspondiente a los detalles estructurales de estas moléculas se comunicará a la dinámica de la célula, a niveles más altos de organización por así decirlo y que puede influir en aquella dinámica. Mientras este razonamiento no es más que cualitativo, puesta credito a la aserción de que en el organismo viviente, al revés de lo que ocurre en el cristal inorgánico, los efectos de la estructura microcópica no pueden ser tautéados; a medida que avance el tiempo, esta influencia llega a invadir el comportamiento de la célula “a todos los niveles”.

Sin embargo, de nuestras argumentaciones referentes a la casi descomponibilidad se deduce que aquellos aspectos de la microestructura que contallan los lentos aspectos del desarrollo en la dinámica de los organismos pueden separarse de los aspectos que contallan los procesos metabólicos, más rápidos, en las células. Por esta razón, no deseamos de llegar a desenmarañar la trama de aquellas causas. Véanse también J. R. Platt en su recenión del libro de Elsasser, publicada en Perspectives in Biology and Medicine, 2: 240-245 (1959).”

La arquitectura de la complejidad

Descripciones simples de sistemas complejos

Cabría suponer que la descripción de un sistema complejo consistía en una estructura compleja de símbolos y, de hecho, acaso no fuese más que esto. Pero no existe ley de conservación que exija que la descripción sea tan enfada como el objeto descrito. Un ejemplo banal demostrará cómo puede describirse económicamente un sistema. Supóngase que el sistema consiste en una ordenación bidimensional como la siguiente:

\[
\begin{array}{ccccccccc}
A & B & M & N & R & S & H & I \\
C & D & O & P & T & U & J & K \\
M & N & A & B & H & I & R & S \\
O & P & C & D & J & K & T & U \\
R & S & H & I & A & B & M & N \\
T & U & J & K & C & D & O & P \\
H & I & R & S & M & N & A & B \\
J & K & T & U & O & P & C & D \\
\end{array}
\]

Llamemos a la formación \[\begin{array}{c}
AB \\
CD \\
\end{array}\] a, a la formación \[\begin{array}{c}
MN \\
OP \\
\end{array}\] m, a la formación \[\begin{array}{c}
RS \\
TU \\
\end{array}\] r, y a la formación \[\begin{array}{c}
HI \\
JK \\
\end{array}\] h.

Llamemos a la formación \[\begin{array}{c}
am \\
m_a \\
\end{array}\] w, y a la formación \[\begin{array}{c}
rh \\
r_h \\
\end{array}\] x.

En ese caso, la formación completa consistirá simplemente en \[\begin{array}{c}
w_x \\
w_z \\
\end{array}\]. Mientras que la estructura original consistía en 64 símbolos, no son precisos más que 35 para exponer su descripción:
Las ciencias de lo artificial

\[S = \frac{wx}{xw} \]

\[w = \frac{am}{ma} \]

\[x = \frac{rh}{hr} \]

\[a = \frac{AB}{CD} \]

\[m = \frac{MN}{OP} \]

\[r = \frac{RS}{TU} \]

\[h = \frac{HI}{JK} \]

Esta reducción se consigue gracias a utilizar la redundancia en la estructura original. Dado que el grupo \(AB \) por ejemplo, aparece cuatro veces en el grupo completo, resulta económico representarlo por medio del símbolo aislado \(a \).

Si una estructura compleja resulta totalmente irreductible —si en su estructura no hay ningún aspecto que pueda inferirse de otro— entonces es que constituye su descripción más simple. Podemos exponerla, pero no describirla, por medio de una estructura más simple. Las estructuras jerárquicas que hemos estado estudiando poseen un grado elevado de redundancia, de aquí que a menudo puedan describirse en términos económicos. La redundancia acepta diferentes formas, de las que citaré tres:

1. Los sistemas jerárquicos acostumbran a estar compuestos únicamente de unas pocas clases diferentes de subsistemas, dentro de varias combinaciones y formaciones. Un ejemplo conocido lo constituyen las proteínas, la inmensa variedad de las mismas, resultado únicamente de las combinaciones de sólo veinte aminoácidos diferentes. De igual modo, los noventa y pico de elementos aportan todos los tipos de ladrillos necesarios para una infinita variedad de moléculas. De aquí que podamos elaborar nuestra descripción partiendo de un alfabeto restringido de términos elementales correspondientes al conjunto básico de subsistemas elementales con los que se genera el sistema complejo.

2. Los sistemas jerárquicos suelen ser, según hemos visto, casi desconcomibles. De aquí que únicamente las propiedades colectivas de sus partes entren en la descripción de las interacciones de dichas partes. Una generalización del concepto de la casi desconcomibilidad es la que podría denominarse «la hipótesis del mundo vacío»: la mayoría de las cosas se encuentran conectadas únicamente de forma débil a la mayoría de las demás cosas; para una tolerable descripción de la realidad no es preciso tener en cuenta más que una insignificante fracción de todas las interacciones posibles. Gracias a la adopción de un lenguaje descriptivo que impide que nada quede sin mencionar, se puede describir de forma perfectamente concisa un mundo casi vacío. La señora Hubbard no tenía por qué repasar la lista de posibles contenidos para afirmar que su armario estaba vacío.

3. Con la «recodificación» apropiada, la redundancia que se encuentra presente sin ser obvia en la estructura de un sistema complejo, llega a ponerse de manifiesto. La recodificación más corriente para la descripción de los sistemas dinámicos consiste en substituir una descripción del recorrido del tiempo con una descripción de una ley diferencial que genera dicho recorrido. Es decir, la simplicidad estriba en una constante relación entre el estado del sistema en un momento dado y el estado del sistema al cabo de algún tiempo después. Así pues, la estructura de la sucesión 1 3 5 7 9 11... se expresa de forma más sencilla al observar que cada uno de sus miembros se obtiene al añadir 2 al anterior. Esta es la
Las ciencias de lo artificial

sucesión que encontró Galileo al describir la velocidad al final de intervalos sucesivos de tiempo de una pelota deslizándose por un plano inclinado.

Constituye un propósito corriente la afirmación de que la tarea de la ciencia consiste en utilizar la redundancia del mundo para describir simplemente dicho mundo. No voy a analizar aquí la cuestión general metodológica, pero sí voy a estudiar más de cerca dos tipos principales de descripción que parecen estar a nuestro alcance al ir en pos de la comprensión de los sistemas complejos. Los llamaré respectivamente descripción de estado y descripción de proceso.

Descripciones de estado y descripciones de proceso

«Una circunferencia es una figura cuyos puntos son equidistantes de un punto dado.» «Para trazar una circunferencia, se hará girar un compás sobre un brazo fijo hasta que el otro brazo haya regresado al punto de partida.» Queda implícito, según Euclides, que de llevar a cabo el proceso detallado en la segunda frase, se obtendrá un objeto que cumple con la definición de la primera. La primera frase constituye una descripción de estado de una circunferencia, mientras que la segunda es una descripción de proceso.

Así pues, estas dos formas de aprehender estructuras constituyen la trama y el fundamento de nuestra experiencia. Los fotogramas, las fotocopias, la mayoría de los diagramas y las fórmulas químicas estructurales son descripciones de estado. Las fórmulas, las ecuaciones diferenciales y las ecuaciones de las reacciones químicas son descripciones de proceso. Las primeras caracterizan al mundo según se experimenta; aportan los criterios para identificar los objetos, a menudo gracias a modelar los propios objetos. Las últimas caracterizan al mun-

do según se actúa sobre él; aportan los medios para producir o generar objetos que posean las características deseadas.

La distinción entre el mundo según se experimenta y el mundo según se actúa sobre él define la condición básica para la supervivencia de los organismos adaptadores. El organismo debe desarrollar correlaciones entre los objetivos en el mundo experimentado y actos en el mundo en estado de proceso. Así que se hacen conscientes y se verbalizan, estas correlaciones corresponden a lo que solemos llamar análisis medio-fin. Dado un deseo de estado de una cuestión y un estado existente de una cuestión, la tarea de un organismo adaptable consiste en encontrar la diferencia entre estos dos estados y descubrir después el proceso correlativo que eliminará la diferencia.22

Así pues, la solución de los problemas exige el continuo traslado de la descripción de estado a la descripción de proceso de la misma realidad compleja. Platón, en su Menón, argumentaba que aprender es recordar. No sabía explicar de otro modo cómo llegamos a descubrir o reconocer la respuesta a un problema a menos de conocer de antemano dicha respuesta.23 Nuestra relación dual con el mundo constituye la fuente y la solución de la paradoja. Planteamos un problema dando la descripción de estado de la solución. La tarea consiste en dar con una secuencia de procesos que produzcan el estado objetivo a partir de un estado inicial. El traslado de la descripción de proceso a la descripción de estado nos permite reconocer cuándo lo hemos conseguido. La solución es genuinamente nueva para nosotros y no precisamos de la teoría de Platón en relación con el recurso para explicar cómo la reconocemos.

Las ciencias de lo artificial

Cada vez resulta más evidente que esta actividad humana llamada resolución de problemas es básicamente una forma de análisis medio-fin que tiene a encontrar una descripción de proceso que lleve hasta dar con el objetivo deseado. El paradigma general es: dada una fotocopia, encontrar la fórmula correspondiente. Gran parte de la actividad de la ciencia consiste en la aplicación de aquel paradigma: dada la descripción de ciertos fenómenos naturales, encontrar las ecuaciones diferenciales para los procesos que producirán los fenómenos.

La descripción de la complejidad en los sistemas auto-reproductores

El problema de encontrar descripciones relativamente simples para sistemas complejos no sólo resulta de interés para una comprensión del conocimiento humano del mundo, sino también para una explicación de cómo un sistema complejo puede reproducirse a sí mismo. En mi estudio de la evolución de los sistemas complejos, abordé superficialmente la función de la auto-reproducción.

Los átomos de un elevado peso atómico y las moléculas inorgánicas complejas testimonian el hecho de que la evolución de la complejidad no implica auto-reproducción. Si la evolución de la complejidad a partir de la simplicidad es lo bastante probable, se producirá en forma repetida; el equilibrio estadístico del sistema encontrará gran sector de partículas elementales participantes en sistemas complejos.

Si, pese a ello, la existencia de una determinada forma compleja aumentase la probabilidad de la creación de otra forma exactamente como ella, el equilibrio entre complejos y componentes se vería grandemente modificado en favor de los primeros. Si tenemos la descripción de un objeto, lo bastante clara y completa, nos es posible reproducir el objeto a partir de la descripción. Cualquiera que sea el mecanismo exacto de la reproducción, la descripción nos proporciona la información necesaria.

Ahora bien, hemos visto que las descripciones de los sistemas complejos pueden adoptar muchas formas. Podemos tener específicamente descripciones de estado o descripciones de proceso: fotocopias o fórmulas. Los procesos reproductivos podrían elaborarse en torno a cualquiera de estas fuentes de información. Tal vez la posibilidad más sencilla para el sistema complejo consista en servir como descripción de sí mismo: un patrón de acuerdo con el cual puede hacerse una copia. Una de las teorías corrientes más plausibles, por ejemplo, para la reproducción del ácido deoxirribonucleico (DNA) propone que una molécula de DNA, bajo la forma de una doble hélice de partes encajadas (cada una de ellas esencialmente un «negativo» de la otra), se desdobla para permitir que cada mitad de la hélice sirva como pauta según la cual pueda formarse una nueva mitad encajada.

Por otra parte, nuestros conocimientos comunes con respecto a cómo el DNA controla el metabolismo del organismo indican que la reproducción a través de un patrón no es más que uno de los procesos que se efectúan. De acuerdo con la teoría predominante, el DNA sirve como pauta tanto para sí mismo como para el ácido de sustancia ribonucleica relacionado con aquél (RNA). RNA, a su vez, sirve de pauta para la proteína. Sin embargo, las proteínas —de acuerdo con los conocimientos corrientes— dirigen el metabolismo del organismo no a través del método de un patrón sino actuando como catalizadores que gobiernan los ritmos de reacción en las células. Mientras que el RNA es una fotocopi...
Las ciencias de lo artificial

pía para la proteína, la proteína es una fórmula para el metabolismo.

La ontogenia recapitula la filogenia

El DNA de los cromosomas de un organismo contiene alguna — acaso la mayor parte — de la información necesaria para determinar su desarrollo y actividad. Hemos visto que, de ser aproximadamente correctas las teorías corrientes, la información queda registrada no como una descripción de estado del organismo sino como una serie de «instrucciones» para la elaboración y mantenimiento del organismo a partir de unos materiales que lo nutren. Me he servido ya de la metáfora de una fórmula; podría hacer igualmente la comparación con un programa de computadora, que es también una sucesión de normas que gobiernan la elaboración de unas estructuras simbólicas. Permitáseme enumerar algunas de las consecuencias de la última comparación.

Si el material genético es un programa — visto en su relación con el organismo — es un programa de propiedades especiales y peculiares. En primer lugar, es un programa auto-reproductor; hemos considerado ya su posible mecanismo como copiadora. En segundo lugar, es un programa que se ha desarrollado a través de la evolución darwiniana. Basándonos en nuestra argumentación a propósito del relojero, podemos afirmar que muchos de sus antecesores constituirían también programas viables: programas para los subgrupos.

¿Podemos hacer otras conjeturas acerca de la estructura de este programa? En biología hay una conocida

generalización, verbalmente tan clara, que sería contradictoria negarla aun cuando los hechos no vinieran en apoyo de la misma: la ontogenia recapitula la filogenia. El organismo individual pasa, durante su desarrollo, por unos estados que se asemejan a algunas de sus formas ancestrales. El hecho de que el embrión humano desarrolle unos arcos cartilaginosos para las branquias, que después modifica con otros fines, constituye un detalle corriente perteneciente a la generalización. Los biólogos gustan en la actualidad resaltar las cualidades del principio, es decir, que la ontogenia recapitula únicamente las facetas más burdas de la filogenia y éstas aún de forma imperfecta. Dichas cualidades no deben hacernos perder de vista el hecho de que la generalización se mantiene de forma muy apropiada, que comprendía un conjunto de hechos muy importante en relación con el desarrollo del organismo. ¿Cómo interpretar estos hechos?

Una forma de resolver un problema complicado consiste en reducirlo a un problema resuelto previamente, demostrar cuáles son los pasos que llevan de la solución primera a la solución del nuevo problema planteado. Si, alrededor de principios de siglo, hubiésemos pensado en enseñar a un obrero cómo construir un automóvil, seguramente la forma más sencilla hubiera consistido en explicarle cómo se podían modificar un vagón a base de sacarle el árbol y sustituirlo por un motor y un sistema de transmisión. De igual modo podría modificarse un programa genético en el curso de su evolución añadiendo nuevos procesos que transformarían una forma más sencilla en otra más compleja. Para construir una gástrula no hay que hacer otra cosa que tomar una blastula y modificarla.

La descripción genética de una sola célula puede adoptar, pues, una forma totalmente diferente de la descripción genética que reúne células en un organismo multicelular. La multiplicación por división de la célula
Las ciencias de lo artificial

exigiría, como mínimo, una descripción de estado (el DNA, pongamos por caso) y un simple «proceso interpretativo» — para utilizar el término propio del lenguaje relacionado con las computadoras — que copiase esta descripción como un aspecto de aquel proceso más amplio, consistente en copiar, de la división celular. Pero dicho mecanismo está claro que no bastaría para la diferenciación de las células en su desarrollo. Resulta más natural conceptualizar dicho mecanismo basándose en una descripción de proceso y en un proceso interpretativo algo más complejo que produzca el organismo adulto a lo largo de una sucesión de estádios, de los cuales cada nuevo estádio en desarrollo representa el efecto de un operador sobre el anterior.

Resulta arduo conceptualizar la interrelación de estas dos descripciones. Dicha interrelación debe existir, puesto que ya se conoce bastante acerca de los mecanismos de genes y enzimas para demostrar que cumplen una importante función tanto en el desarrollo como en el metabolismo celular. La única pista obtenida de nuestras anteriores consideraciones es que la descripción puede ser que sea en sí jerárquica, o casi descomponible, en su estructura, donde los niveles más bajos gobiernan la rápida dinámica de «alta frecuencia» de la célula individual y las interacciones de más alto nivel gobiernan la lenta dinámica de «baja frecuencia» del organismo multicelular que se está desarrollando.

Contamos únicamente con unas pocas pruebas, dejando aparte el hecho de la recapitulación, acerca de que el programa genético está organizado de esta forma, si bien dicha evidencia, según se ofrece, resulta compatible con este concepto. Partiendo de la base de que podemos diferenciar la información genética que gobierna el metabolismo celular gracias a la información genética que gobierna el desarrollo de células diferenciadas en la organización multicelular, resulta enormemente simplificada — como hemos visto ya — nuestra labor de descripción teórica. Pero acaso haya llevado demasiado lejos mis especulaciones.

Tiene aplicaciones fuera del reino de la biología la generalización según la cual, en los sistemas en evolución cuyas descripciones queden acumuladas en un lenguaje de proceso, cabría esperar que la ontogenia recapitule parcialmente la filogenia. Puede aplicarse igualmente, por ejemplo, a la transmisión de los conocimientos en el proceso educativo. En la mayoría de los sujetos, sobre todo tratándose de ciencias en rápido avance, el progreso desde el estadio elemental al avanzado constituye en gran medida un progreso a través de la historia conceptual de la propia ciencia. Por fortuna, la recapitulación rara vez es literal, como tampoco lo es en el caso biológico. En química no enseñamos la teoría del flogisto para enmendarla más tarde. (No estoy seguro de no poder citar ejemplos de otras cuestiones en las que hagamos exactamente lo mismo). Pero las revisiones que nos liberan de las acumulaciones pasadas son tan infrecuentes como laboriosas. Tampoco son recomendables en todos los casos porque una recapitulación parcial en de los genes en los diferentes tejidos y a diferentes estados de desarrollo son estudiadas por J. G. Gall, Chromosomal Differentiation, en W. D. McElroy y B. Glass (eds.), The Chemical Basis of Development (Baltimore: John Hopkins Press, 1988), págs. 198-215. Y, finalmente, un modelo muy parecido al aquí propuesto es el que, independientemente y de forma mucho más exhaustiva, señala J. R. Platt, A "Book Model" of Genetic Information Transfer in Cells and Tissues, en M. Kashy y B. Pullman (eds.), Horizons in Biochemistry (Nueva York: Academic Press, en vías de publicación). Por supuesto que éste no es el único tipo de mecanismo en el que podría controlarse el desarrollo mediante una descripción de proceso. La inducción, en la forma imaginada en la teoría del organizador de Spemann, se basa en la descripción de proceso, donde los metabolitos, ya en el tejido formado, controlan los siguientes estádios del desarrollo.
Las ciencias de lo artificial

muchos casos puede ofrecer el camino más expedito hacia un avance de conocimientos.

Sumario: la descripción de la complejidad

La complejidad o simplicidad de una estructura depende básicamente de nuestra forma de describirla. La mayoría de las estructuras complejas que encontramos en el mundo son enormemente redundantes y es posible servirnos de esta redundancia para simplificar su descripción. Pero para utilizarla, para conseguir la simplificación, debemos dar con la representación adecuada.

El concepto de sustituir una descripción de proceso por una descripción de estado en la naturaleza ha desempeñado una función básica en el desarrollo de la ciencia moderna. Las leyes dinámicas, expresadas bajo la forma de sistemas de ecuaciones diferenciales o de diferencia, en gran número de casos han proporcionado la pista para la descripción simple de lo complejo. En los párrafos anteriores he tratado de demostrar que esta característica de la indagación científica no es accidental ni superficial. La correlación entre descripción de estado y descripción de proceso es básica para el funcionamiento de cualquier organismo adaptable, para su capacidad de actuar intencionadamente dentro del ambiente en que se mueve. Nuestra comprensión actual de los mecanismos genéticos indica que incluso al describirse a sí mismo el organismo multicelular tiene a la descripción de proceso —programa cifrado genéticamente— por la representación útil y estricta.

Conclusión

Nuestras especulaciones nos han llevado a través de un gran abanico de cuestiones, si bien éste es el precio que hay que pagar cuando se quieren buscar propiedades comunes a muchos géneros diversos de sistemas complejos. La tesis que he expuesto es que un camino hacia la elaboración de una teoría no trivial de los sistemas complejos se conseguirá a través de una teoría de la jerarquía. Empíricamente, una gran proporción de sistemas complejos de entre los que observamos en la naturaleza muestran una estructura jerárquica. En el terreno teórico, cabría esperar que los sistemas complejos fuesen jerarquías en un mundo en que la complejidad tuviese que evolucionar a partir de la simplicidad. En su dinámica, las jerarquías poseen una propiedad, la casi descomponibilidad, que simplifica grandemente su comportamiento. La casi descomponibilidad simplifica también la descripción de un sistema complejo y hace más fácil de comprender cómo puede acumularse dentro de un razonable límite la información necesaria para el desarrollo o reproducción del sistema.

Tanto en la ciencia como en la ingeniería, el estudio de los sistemas constituye una actividad que va haciéndose cada vez más popular. Su popularidad es más una respuesta a una acuciante necesidad de sintetizar y analizar la complejidad, que a un posible desarrollo muy marcado de un cuerpo de conocimientos y técnicas para tratar de la complejidad. Si tal popularidad es algo más que una moda, la necesidad engendrará el ingenio y aportará la esencia suficiente. Las indagaciones aquí realizadas representan una tendencia determinada en pos de aquella esencia.